

Nano-engineered ultra high gain microchannel plates

D.R. Beaulieu, D. Gorelikov, P. de Rouffignac, K. Saadatmand, K. Stenton, N. Sullivan, A.S. Tremsin

> Arradiance, Inc. 142 North Road, Suite F-150 Sudbury, MA 01776, USA www.arradiance.com

Outline

- Present MCP technology
 - Areas of MCP applications
 - Glass-based structures, manufacturing
 - Present limitations and drawbacks
 - Previous alternative technologies
- Improvement of the glass MCP characteristics
 - Gain
 - Lifetime
 - Ion feedback
- Novel substrate-independent manufacturing technology

Areas of MCP detector applications

- Night vision goggles
- Mass spectroscopy
- Astrophysics
- Synchrotron instrumentation
- Biomedical research (FLIM, FRET,...)
- X-Ray and UV photon detection
- Neutron radiography and Bragg edge spectroscopy

Arradiance.com

3

4

Advantages of MCP detectors

- Event counting
- Very low dark current
- Sensitivity to photons, ions, electrons neutrals, neutrons, alpha particles
- Simultaneous high spatial (~10 μm FWHM) and temporal (~100 ps FWHM) resolution
- Different geometries (e.g. hole in the middle)
- Solar blindness
- Large active area

Disadvantages of glass MCP detectors

- Limited counting rate capabilities (<100 MHz)
- Difficult photocathode technology for visible range
- High voltage
- Limited lifetime
- Requires vacuum
- Fixed pattern noise
- High manufacturing costs

Commercial MCPs: geometry and gain

Difficulties of present lead glass MCP technology

- Complex production technology;
- Both conduction and emission layer produced simultaneously and cannot be optimized independently.
- Large parameter deviation and low reproducibility; geometrical distortions unavoidable.
- Image spottiness;
- Not high temperature compatible;
- Limited lifetime;
- Small pore MCPs and large area MCPs are expensive to produce;
- Lead contamination;

È

9

Previously tried: Anodic alumina MCPs

Sub-µm pores in anodic alumina substrates

Lithographically etched 10 µm pores

Initial attempts did not produce conformal coating. To date no fully functional MCP exists

Good substrates, no continuous films

A. Govyadinov, et al., Nucl Instr. Meth. A 419 (1998) 667

Previously tried: Punched alumina MCPs

Holes are punched in thin films, which are laminated into thick structures

Very large pore sizes. Difficult to manufacture (stacking many substrates). Not suitable for imaging.

SiO₂
CuAl₂O₄

Bulk alumina

SEM image of the pore wall

Yi Whikun, et al., Rev. Sci. Instr. 71 (2000) 4165

Arradiance.com

11

Previously tried: Silicon micromachined MCPs

Pore pattern is set by photolithography

CVD growth of conduction layer and emission layer

Relatively low gain.

Long term stability.

No solid edge.

Full field UV image (stack of 4 MCPs). Residual distortions are seen

Gain of 4 MCP stack (40:1 each)

IWORID10, July 2008

Arradiance: Improved MCP technology

Improvement of the emission layer

- Ionger lifetime
- higher gain
- reduced ion feedback

Nano-engineered conduction and emission layers

- Novel MCP substrates (new glasses or micromachined)
- Better uniformity / spatial resolution
- Increased lifetime
- Novel photocathodes / opaque mode
- Withstand much higher processing temperature
- Very Low noise (no radioactive traces)

Applied over commercial glass MCPs: 50:1 L/D, 4.8 μ m pores, ~250 M Ω resistance

5x-10x gain increase

Arradiance.com

È

Uniformity of Arradiance coating: functional test

UV Photocathode **MCP** Electron source

MCP Under Test

Phosphor Screen / Anode

Full field illumination image. Test MCP is irradiated by a uniform electron flux. Photograph of the phosphor screen is shown.

Novel secondary electron emission layer

Improved lifetime, Relaxed detector preconditioning

Applied over commercial glass MCPs

16

Novel secondary electron emission layer

Revive aged MCP to high gain values

Applied over commercial glass MCPs

- Can be applied to any substrate sustaining ~200°C
- Conformal coating / large aspect ratio
- Micromachinned substrates
- No radioactive traces
- Separate control of conduction and emission properties
- Reduced ion emission / long life photocathodes

- Stable resistance
- Typical exponential gain increase with bias
- Good gain ~ 14000 at 1000V
- Good TCR (comparable to glass MCP values)

4.8 μ m pore substrate, 50:1 L/D, Bias = 880V, I_{out}~0.07 pA/pore, gain under electron bombardment

Quickly reaches stable gain

Arradiance.com

- Stable resistance
- Typical exponential gain increase with bias
- Good gain ~ 40000 at 1000V bias
- Good TCR (comparable to glass MCP values)

¢

Nano-engineered conduction and emission films

10 μ m pore NO LEAD glass substrate, 40:1 L/D, Bias = 880V, I_{out}~0.4 pA/pore, gain under electron bombardment

Quickly reaches stable gain

4.8 μm pore substrates, 50:1 L/D, gain under electron bombardment

Typical count rate saturation at output equal to ~10% of strip current

Summary

- Novel emission and conduction layers for MCP technology have been developed
- Emission layer improves the performance of glass MCPs
 - High gain
 - Longer lifetime
 - Reduced outgassing
- Substrate independent conduction and emission films open new possibilities
 - Micromachinned substrates
 - high T compatible
 - Novel photocathode materials/configurations
 - Low noise no radioactive traces
 - Better uniformity / reproducibility / spatial resolution

È