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Abstract

We review experimental and theoretical works devoted to electron and photon emission from island metal
"lms (IMFs) representing ensembles of small metal particles deposited onto a dielectric substrate and
coupled via penetrable potential barriers. Electrons and photons are emitted when the "lms are energized by
passage of current through them or by laser irradiation. In either case the primary recipient of the energy is
the electron gas, which can be heated up to temperatures much higher than the particle lattice temperature.
A theoretical substantiation of the model of hot electrons in nanoparticles is presented. The major physical
factor that permits generation of hot electrons in IMFs is the dramatic reduction (by orders of magnitude) of
the electron}lattice energy transfer in the particles whose size is smaller than the mean free path of electrons
in the volume. In such particles with a ballistic motion of electrons, the energy is being lost mainly in surface
scattering acts which are less e!ective in energy transfer than generation of volume phonons. Thus, the
electron temperature can become substantially higher than the lattice temperature provided the absorbed
power density is high enough and the lattice of the island is intensively cooled by the substrate. The model of
hot electrons is used to interpret experimental data. Non-equilibrium electron heating in IMFs can be
observed even under stationary conditions, so the island metal "lms basically di!er in their electronic
properties from continuous metal "lms and bulk metals where hot electrons can be obtained only for very
short times (410~11 s). Thus, the island metal "lms represent an important variety of nanomaterials having
rather unusual physical properties. IMFs can be utilized to fabricate cathodes having interesting application
potentialities in vacuum microelectronics, information display technologies and infrared image conversion.
Hot electrons generated in nanoparticles may also play a signi"cant role in various dispersed systems
exposed to energy #uxes. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 73.50.Fq; 79.60.Jv; 78.66.Vs; 73.61.Tm; 36.40.Vz; 79.40.#z

Keywords: Island "lms; Nanoparticles; Hot electrons; Electron emission; Photon emission; Optical absorption
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1. Introduction and outline

Various kinds of dispersed systems have attracted intense interest for many decades due to their
peculiar properties caused by the fact that these objects represent ensembles of small particles. As
the size of the particles R is being reduced, the number of surface atoms in relation to that of
volume atoms is growing as R~1. Thus, the speci"c surface area of dispersed matter can attain huge
values, and many aspects of behaviour of such systems are known to be determined by surface
processes. This is actually a geometric size e!ect. However, there are a number of other size e!ects
which come into play whenever the particle size becomes equal to some characteristic physical
length like the electric "eld screening length, mean free path of electrons, de Broglie wavelength, etc.

An interesting example of dispersed systems are island metal "lms (IMFs), representing quasi-
two-dimensional ensembles of small particles. Such "lms can easily be prepared, e.g. by evaporat-
ing a small amount of metal upon a dielectric substrate which is unwettable by the metal. If the
mean distance between the metal islands is small enough, the islands are coupled by electron
tunneling and thus represent an entity. Nevertheless, the properties of such an object carry an
imprint of the properties of the small particles making up the "lm. Important factors that determine
the peculiar characteristics of IMFs are: size e!ects in properties of small particles; the ability of
such particles to pass high-energy #uxes without destruction due to strong cooling e!ect of the
substrate; the tunnel coupling between the particles; possible existence of high local "elds around
them. Interest in IMFs was sparked more than 30 years ago when Borziak, Fedorovich and Sarbei
discovered that passing a current through an IMF gives rise to electron and light emission
originating from some small (41 lm) spots called emission centers [1]. Later on, the same e!ect
was observed in the "lms being irradiated by a su$ciently powerful infrared laser beam [2}4] or
microwave radiation [5].

This "eld has a comparatively extensive literature, including some monographs and reviews. The
"rst 15 years of investigations on IMFs were summarized in Borziak and Kulyupin's monograph
[6]. The subject was also partially covered in Nepijko's book [7] published in 1985. Switching
phenomena in IMFs were reviewed by Pagnia and Sotnik ten years ago [8]. There is also our brief
review which summarizes more recent works [9]. Meanwhile, a considerable progress has been
achieved quite recently both in understanding the physics of hot electrons in small metal particles
and in applications of the island "lms. This problem starts to attract renewed interest in the context
of the rapid advancement of nanophysics and nanotechnologies. Therefore we hope that a review
giving a more or less self-contained coverage of the problem may be timely and useful, especially
when one considers that many essential works are scattered over not easily accessible journals and
proceedings.

This article is devoted mainly to phenomena of electron and light emission from island metal
"lms and to nonequilibrium heating of electrons in small metal particles. The review is organized
as follows. After this introductory section, we shall consider methods of preparation of IMFs
(Section 2). Experimental data on the conductivity of IMFs and electron emission from them are
presented in Section 3 which also discusses the main concepts suggested for interpretation of these
results. Section 4 is concerned with light emission from the "lms. Sections 5}7 give a rigorous
theoretical substantiation of the model of hot electrons in small metal particles. The readers who
are not interested in the theoretical details, may skip these sections or just read their summaries.
Examples of practical applications of IMFs are considered in Section 8. Finally, Section 9 contains
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Fig. 2.1. Schematic of the sample with an island "lm between two contact electrodes.

general conclusions as well as some remarks about outlooks for further studies in the "eld and
possible implications of hot electrons in various dispersed systems. It should be noted that "gures
are numbered independently in each section.

Let us start with a closer look at the objects whose properties are discussed in this review: the
island metal "lms (IMFs).

2. Island metal 5lms: preparation and major experimental 5ndings

2.1. Substrates and contact electrodes

Substrates for preparation of IMFs are made from various dielectric materials, most often from
glass, quartz and mica. Their surfaces are cleaned by rinsing in standard chemical solutions and
distilled water. In some studies the "lms were deposited on alkali-halide crystal surfaces which were
obtained by cleaving the crystals immediately before the vacuum evaporation of the "lm.

The contact electrodes whose typical geometry is illustrated in Fig. 2.1 represent continuous
"lms with thickness of &100 nm which are prepared either by thermal evaporation in vacuum
through a mask or by standard photolithographic technique. In the former case, there is
a transition (`penumbrala) region near the boundary of the continuous contact "lm where the "lm
has an island structure with variable mass thickness (Fig. 2.2a). Its existence can substantially a!ect
the growth and structure of the island "lm which is subsequently prepared in the gap between the
contacts (see Section 2.2).

For structural studies by transmission electron microscopy, the island "lms were evaporated
onto carbon "lms 10}30nm thick deposited on meshes by the standard method. When structure
and electrical characteristics were investigated in parallel, special substrates were used representing
thin mica plates with a hole in the middle for passing the electron beam (Fig. 2.3). Each plate was
"rst entirely (including the hole) coated with a Formvar "lm about 20 nm thick, and then a 50 nm
SiO

x
"lm was deposited over the Formvar sublayer. In the next step this sublayer was removed

from the hole by heating at 150}2003C leaving there only the SiO
x
"lm. This "lm served as the

substrate for deposition of Au contact electrodes (by evaporation through a mask) and of an island
"lm to be studied in the electron microscope. To prevent electrostatic charging of the SiO

x
"lm by

the probing electron beam, its rear side was coated with a carbon layer 5}10 nm thick.
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Fig. 2.2. (A) A `penumbrala region near the edge of a contact electrode. (B) Structure of an Au island "lm with a mass
thickness of 5 nm near the contact with the `penumbrala edge.

Fig. 2.3. Schematic of a sample for in situ electron microscopic experiments with IMFs.

2.2. Preparation of IMFs

The simplest way of preparation of IMFs is vacuum evaporation of a metal onto a dielectric
substrate [10]. One can also apply cathode sputtering in a noble gas atmosphere [11], electro-
deposition from solutions [12] as well as spraying of a suspension containing "ne solid particles
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[13]. Up to now, the most widely used method has been vacuum evaporation. The metals utilized
for fabricating IMFs have been Au, Ag, Pd, Pt, Cu, Cr, Mo and some others. Graphite island "lms
also show very good characteristics. It is seen that metals with su$ciently high melting points,
whose atoms have a comparatively low mobility at room temperature, are deposited. This ensures
a reasonably good stability of the "lm properties. Prior to preparing the island "lm, a pair of
contact electrodes is deposited on the substrate as considered in the previous section. Then
a smaller amount of a metal is additionally evaporated upon the whole surface which allows
one to create an island "lm within the gap between the contacts (Fig. 2.2b). Typically the gap is
about 10lm.

Since metals normally do not wet dielectric surfaces, the equilibrium growth mode corresponds
in this case to the Volmer}Weber mechanism [14]. Thus, if the mass thickness of the deposited "lm
is small enough, the metal atoms coalesce during deposition or subsequent annealing into islands
to minimize the surface and interface free energy [15}17]. The nuclei appearing at the early stage of
the "lm growth have an atomic size. They grow three-dimensionally as the metal deposition is
continuing, but their dimension parallel to the surface increases much faster than normal to the
surface (Fig. 2.4). The average size of the islands and their distribution over the substrate depend
on many factors such as temperature of the substrate, evaporation rate, the mass thickness of the
evaporated "lm, the chemical nature of the adsorbate and the substrate as well as on the
temperature and duration of subsequent annealing. It is also well known that the spatial arrange-
ment of the islands is sensitive to the presence and nature of surface defects (the decoration of the
defects by metal atoms is routinely used in electron microscopy to visualize atomic steps and other
surface imperfections). By choosing all the factors listed above, one can vary the parameters of
IMFs within broad limits. The late stages of deposition result in coalescence of adjacent islands,
then in the attainment of the percolation limit at some critical coverage, and "nally in the
formation of a continuous "lm. Typically, the mass thickness of IMFs described in this article is
about 4}10 nm.

The evolution of the structure of growing island "lms could be investigated simultaneously with
measurements of their electrical properties immediately in an electron microscope equipped with
a built in vacuum chamber [18]. A pressure of &10~8Torr around the sample under study was
provided by di!erential pumping. In other works, investigations of this type have been performed
in a high-vacuum electron microscope [19]. To study the structure of the "lms deposited on thick
substrates, it is necessary either to transfer the "lm onto another substrate which is transparent for
electrons in the transmission electron microscope or to use the well-known method of replicas. In
any case the "lm must be protected from changes which may occur while carrying the sample
through atmosphere. This is achieved by coating the "lm, prior to its exposure in air, with a layer of
SiO

x
or carbon about 30}40nm thick. The "lms obtained on 50 nm SiO

x
substrates are the most

convenient objects, since all the measurements can be carried out in situ. The method of prepara-
tion of such substrates has been described in Section 2.1.

The electron microscopic investigations have shown that the size distribution of the islands is
rather wide: there are relatively few islands about 102 nm in size and at the same time a large
number of nanosized islands in between. It is also evident that the structure of the deposited island
"lm can be peculiar in the `penumbrala region of the contacts where these electrodes themselves
have an island structure. Such peculiarities do occur and are manifested both in a nonuniform
potential drop across the "lm when a voltage is applied to it [20] and even in a speci"c optical
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Fig. 2.4. Structure of thin Bi "lms on a carbon substrate at various mass thicknesses (in nm). Substrate temperature
during Bi evaporation was 1003C [21].

absorption in the near-contact areas [21]. If the edges of the contact electrodes are sharp, as e.g. in
the case when the gap is obtained by scratching a continuous "lm (Fig. 2.5), the structure of the
island "lm forming in the gap is found to be statistically homogeneous.

Although our review is focused on the properties of metal island "lms, it is appropriate to
mention here the possibilities of preparation of semiconductor island "lms, since some experiments
reveal similarity in emission properties of metal and semiconductor "lms (see Section 3.6). In
principle, there are no obstacles to fabrication of semiconductor island "lms. Actually the corre-
sponding methods have been (and are being) intensively developed in connection with investiga-
tions of quantum dots [22}24]. In Section 3.6, we describe a method in which a Si island "lm is
obtained as a result of controlled evaporation of thin Si single crystal epitaxially grown on
sapphire.
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Fig. 2.5. Structure of an Au island "lm on glass substrate near the contact electrode with a sharp edge. The mass
thickness of the "lm is 4 nm.

An important physical e!ect that probably can be used to better control the properties of island
"lms is a pronounced self-organization which occurs, under proper conditions, in the course of thin
"lm growth. This phenomenon has been much investigated in recent years (see e.g. [22}33]). The
process starts at submonolayer coverages and continues at later stages when mesoscopic islands
are being formed. Diverse mechanisms are predicted to drive the self-organization [34}36]. The
most universal of them seems to be connected with elastic strains induced in the substrate by the
growing "lm. Due to this e!ect, both the distances between the islands and the size of the islands
can have rather narrow distributions around their average values. For example, the size of the
islands can be obtained uniform to within $10% [22,23], supposedly due to reduction in adatom
attachment probability caused by strain around the islands.

2.3. Electroforming of IMFs

The current channels with emission centers in them can be electroformed in "lms of various
thickness (from island "lms to semicontinuous ones) [6,8].

It has been found that the #ow of a conduction current through the "lm is a necessary condition
of its electroforming. Indeed, experiments carried out at rather high electric "elds (up to
&5]105V/cm parallel to the substrate surface) have shown that the presence of such a "eld alone
(without current) does not produce any appreciable e!ect on the island "lm properties [37]. Some
other authors [15] reported on sensitivity of the "lm structure to the electric "elds as low as &103

V/cm, but their experiments were made at "lm thicknesses when a considerable current could pass
through their "lms [38].

To electroform a gold or silver island "lm of `standarda geometry (see Section 2.1), it is usually
su$cient to raise the voltage applied to the "lm up to about 20}30V for a time of 0.5}2min. The
island "lms prepared from refractory metals are electroformed at somewhat higher voltages.
The presence of overlayers such as BaO or some organic species on IMFs facilitates the elec-
troforming process, probably due to reduction of the surface free energy. The electroforming can
also be carried out by applying a pulsed voltage of about 100 V at a pulse width of the order of
milliseconds.
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Fig. 2.6. An Au-decorated island "lm of Au on SiO
x

with a region previously identi"ed as an emission center. The
decoration with Au was carried out while a current passed through the "lm. The current channel shown by an arrow
appears as a light path, since Au being evaporated was carried away from it.

The electroforming proceeds more controllably when the contact electrodes have a special
geometry which favours the emergence of the current channels in some particular places. The same
e!ect is attained in chain island "lms (see Section 2.5).

The current #ow, which "rst sets in at increased voltages only, seems to induce the process of
electromigration in the "lm facilitated by some Joule heating, which results in the formation of
clear-cut tunneling percolation paths (`current channelsa) and, as a consequence, in a sharp and
irreversible decrease of the "lm resistance [39]. The current channels can be visualized with the
aid of a thermosensitive "lm deposited on the surface of a sample through which a current is passed
[40]. The "lm becomes decolorized over the channels, which can be seen under an optical
microscope. The current channels were also investigated at a higher resolution by electron
microscopy [41]. With this aim, the island "lms were prepared on thin SiO

x
substrates transparent

to probing electrons (see Section 2.1). The evaporation of the "lms as well as the investigation of
their structure, conductivity and emission characteristics were performed in situ. To reveal the
current channels, the "lms deposited between the contacts were decorated by a very thin metal
layer [42]. When a current is passed through the "lm, the previously deposited decorating metal
atoms drift along the channels (and maybe are partially evaporated from them, since the current
density in the channels can amount to 106}107A/cm2). If the decoration is being made while
passing the current, one obtains the impression that the decorating atoms are not at all adsorbed
by the channels. Thus the channels appear as winding light lines (Fig. 2.6) [41].

High-resolution electron microscopy has shown that the current channel consists of an ultra-
dispersed system of nano-islands separated by nm distances. They are coupled with each other by
a tunneling process and in this way provide a continuous conduction path in the "lm. The channels
contain also a small number of larger islands which are shaped in the process of electroforming.

Thus, after irreversible switching of the "lm to the low-resistance state, an appreciable conduc-
tion current #ows even at voltages 5}10 V, much lower than those used for electroforming, and this
current is concentrated predominantly within the individual channels. It is just in the electroformed
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Fig. 2.7. A device for simultaneous observation of electron and light emission centers. 1, a glass bulb, 2, the sample with
an island "lm, 3, cathodoluminescent screen, 4, window, and 5, an optical microscope.

Fig. 2.8. Centers of light emission in an IMF (a) and the corresponding image of electron emission centers in the same
"lm on a cathodoluminescent screen (b).

state of IMFs that Borziak et al. [1] discovered the electron and light emission which accompany
the passage of the conduction current through the "lms. In the following sections, we shall give
and discuss the emission characteristics in closer detail. At this point we only note that electrons
and photons are emitted not from the whole "lm, but emerge from small areas (spots) sized
41 lm and termed emission centers. This was found in a device where the spatial distribution of
emitted electrons was visualized on a cathodoluminescent screen [43] (Fig. 2.7). It was also stated
that, within the resolution provided by optical microscopy, the emission of electrons and photons
originates from the same centers (Fig. 2.8). Under an optical microscope, the centers appear as
spots somewhat di!erent in colour and scattered rather chaotically over the "lm. A colour
micrograph of the luminous centers in a gold island "lm was published in the "rst work on the
emission e!ects in IMFs [1]. As the voltage applied between the contact electrodes is increased,
the emission current and light intensity grow both due to increase of the emissivity of each center
and due to possible appearance of new centers. However, some centers can be extinguished if the
applied voltage becomes too high and induces irreversible changes in the "lm structure.

2.4. Emission centers

Electron microscopic investigations have shown that the emission centers are located within the
current channels, one center per channel [44,45]. The location of the emission centers is actually
unpredictable on the substrates with #at surfaces prepared by ordinary methods such as mechan-
ical polishing or cleavage. This is caused by the uncontrolled con"guration of the current channels
which re#ects the statistical character of the nucleation of the islands. A typical emission center
is a structure consisting of a relatively large (&100nm) island surrounded by nano-sized islands
(Fig. 2.9) [44]. Such con"gurations are created in the course of electroforming. It is well known that
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Fig. 2.9. Structure of an Au island "lm in the vicinity of an emission center. The substrate is a SiO
x
"lm 50 nm thick.

in the process of the Ostwald ripening of dispersed systems the large particles are growing at the
sacri"ce of smaller ones due to the di!erence of the saturation vapour pressures over them. Thus,
the emergence of local con"gurations `a large island#nano-islands around ita should be quite
probable, and such structures have indeed been documented in many works on thin "lms (see e.g.
a recent paper [31] and references therein). However, as noted above, usually a single emission
center appears within a current channel so the number of the centers in a "lm cannot be larger than
the number of the channels in it. There is a depletion zone around the large island and due to this
a considerable potential drop occurs at this place. As will be shown in Section 3.4, this plays an
important role in the electron and photon emission from IMFs, since a substantial part of the
power fed into the current channel is released within the center.

The process of electromigration in IMFs is so far poorly investigated. Generally, the phenom-
enon of electromigration is rather complicated and highly sensitive to the chemical nature and the
structure of systems under study. For example, electromigration in a number of bulk metals (Al, Ag,
Au, In, Sn) and in their continuous thin "lms is driven by the scattering of electrons (`electron
winda), i.e. occurs towards the anode [46}50]. The "lms of the same metals being deposited on
a semiconductor surface grow by the Stranski}Krastanov mechanism, i.e. form a continuous
monolayer with three-dimensional islands on it, and often exhibit electromigration towards the
cathode (see e.g. review [51]). Probably, the emission centers arise as a result of an intricate
interplay between the structure of the "lm and the processes of electro- and thermal migration. In
particular, electromigration depends on the local current density and resistivity, depending in turn
on the "lm structure. If a considerable enhancement of the current density appears in some place
in the current channel, it can be anticipated that the electromigration, perhaps combined with
somewhat enhanced Joule heating, may cause a progressing destruction (`burninga) of this segment
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Fig. 2.10. Schematic of a grooved substrate with a chain island "lm on it.

of the channel. This results in a growth of the voltage drop across this segment at the cost of the
potential drop across the remaining parts of the channel. This avalanche-like process appears as
a kind of instability of the uniform potential distribution which, however, does not lead to
a complete burning of the channel if the voltage applied to the "lm is not too high. The result is that
only one emission center survives in a channel. Probably, at some stage of the process there occurs
a stabilization of the "lm structure through coming into play of a mechanism of self-limitation. This
is mirrored in the fact that electroformed IMFs show practically stable conductivity and emission
properties for thousands of hours under appropriate exploitation conditions (see Section 8). We
have dwelt so much on this point, because it is just the segment in the current channel with a sharp
potential drop across it that gives the electron and light emission. The mechanisms of this e!ect will
be discussed in the following sections.

2.5. Chain island xlms

As noted in the previous section, the electroforming of the current channels and emission centers
in them is actually a poorly controlled process on the substrates with #at surfaces prepared by
standard methods. The electrons in the "lm are seeking paths with the lowest resistance where the
electromigration forms eventually a well conducting percolation channel. Since the arrangement of
the islands re#ects a chaotic distribution of the nucleation centers (various defects), the shape of the
current channels is usually very winding and their position is unpredictable. Correspondingly,
the emission centers are also scattered rather randomly over the "lm. It was found, however, that
the centers appear more frequently in the vicinity of the contact electrodes [52] which may re#ect
some speci"cs of the "lm structure in the `penumbrala regions of the contacts (see Section 2.1). For
this reason the emission centers appear as a discrete and irregular chain stretched more or less
parallel to the contacts.

There is, however, a possibility of making the process of the generation of emission centers in
IMFs more controllable. To this end, the "lm is evaporated at a grazing angle onto a substrate
whose surface is grooved (the incidence plane of the atomic beam is orthogonal to the grooves)
(Fig. 2.10). Under such an evaporation geometry, the "lm has the largest mass thickness on the
walls of the grooves whose orientation with respect to the atomic beam axis is closest to normal.
After annealing, one obtains a "lm consisting of the chains of islands located in the grooves.
A micrograph of such a "lm is given in Fig. 2.11. Such `chaina island "lms exhibit a high anisotropy
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Fig. 2.11. Electron microscopic images of chain island "lms on (a) glass substrate with a di!raction grating and
(b) a corrugated surface prepared by photolithography.

of conductivity: the ratio of the conductivities along and across the grooves (chains) amounts to
&102 [53].

An island chain appears as an almost ready current channel, and actually no special electroform-
ing of the chain island "lm is needed for obtaining the electron and light emission from it. The
emission is observed at once as a `normala (not increased) operating voltage is applied to the "lm.
It is interesting, however, that the potential drop along the chains nevertheless appears nonuni-
form. The region of an enhanced potential drop emerges in all the chains, and this region, which
just marks the position of the emission center, is located for all chains at approximately the same
distance from one of the contacts. As a result, the position of the emission centers in such a "lm is
more controllable. Instead of randomly scattered luminous spots, one sees a narrow luminous strip
formed by the individual centers located in all the grooves (chains). The strip is stretched across the
grooves. Probably, the emergence of the emission centers in the chain "lms occurs faster and at
lower voltages (below or equal to the operating voltage).

3. Electrical conductivity and electron emission properties of IMFs

3.1. Major experimental xndings in brief

Experiments carried out in [1] and in later works on emission properties of IMFs have revealed
the following main features.

(1) The conduction current}voltage characteristics of IMFs are linear at low voltages, but
become superlinear at higher voltages.

(2) Electron emission and light emission set in at voltages at which the conduction current}
voltage characteristics of IMFs exhibit deviation from Ohm's law. The emission is observed in both
the continuous and pulse regimes. In the latter case, the measurements were made in the range of
pulse durations q"10~7}10~3 s and frequencies f"1}106 Hz.
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(3) The conduction current grows substantially as an island "lm is covered with an overlayer
that lowers the work function. For instance, the deposition of a BaO monolayer increases
the conduction current by a factor of 10}15. At the same time, the emission current is en-
hanced by 3}4 orders of magnitude. Some organic overlayers cause the occurrence of a section
of negative di!erential resistance in the conduction current}voltage characteristics of IMFs
(see Section 3.5).

(4) The local density of the emission current estimated at the emission centers can amount to
106}107A/cm2. The total emission current can reach up to 10~2 of the total conduction current.
The energy spectrum of the emitted electrons is rather broad. In the cases when it appears to be
Maxwellian, the electron temperature amounts to &103K.

(5) The emitted light spectra usually have maxima in the red region, but deviate from the Planck
law in the sense that they contain more energetic photons. The spectra are considerably narrower
for the chain island "lms than for `irregulara ones.

(6) After the electroforming procedure in which the IMF structure and conductivity undergo
substantial and rapid changes, the IMF properties are stabilized at a constant level. Under
moderate exploitation conditions, they can be maintained for 103}104h.

(7) The electron and light emission from IMFs can also be observed when the "lm is exposed to
infrared laser radiation. In this case, previous electroforming of the island "lm is not required.

(8) The emission phenomena observed in IMFs occur also in the island "lms of semiconductors.
In Sections 3.2}3.7 we shall consider these points in detail. Let us start with the discussion of the

conduction current}voltage characteristics which are very important for understanding the pecu-
liar properties of IMFs.

3.2. Electrical conductivity of IMFs

The electrical conductivity of IMFs has been addressed in many papers and a number of
monographs [54}58]. Their message is that the conductivity of IMFs on dielectric substrates is
basically distinct from that of bulk metals and resembles to some extent the conductivity of
semiconductors. The main questions are the mechanisms of charge transfer between the islands, the
explanation of the non-ohmic conduction current}voltage characteristics and the exponential
temperature dependence of the conductivity, the in#uence of adsorbates on the conductivity, and
aging e!ects.

As mentioned above, the dependence of the conduction current versus voltage applied to an IMF
obeys Ohm's law at weak "elds, but deviates from it at E&103}104 V/cm (E is the average electric
"eld in the "lm) (Fig. 3.1). Within a narrow interval of thicknesses of IMFs, the temperature
resistance coe$cient is found to be negative. So a possible explanation for the superlinear
conduction current}voltage characteristics could be the Joule heating of the islands. However, this
hypothesis was discounted by the experimental data [59]. Since the dependence ln I

#
versus 1/¹

appears linear in a given temperature range, some authors introduced the concept of the activation
energy of conductivity, E

!
. The value of E

!
decreases with increasing mass thickness of the "lm and

in the limiting case, as the metal "lm becomes continuous, the temperature resistance coe$cient
turns positive. In terms of E

!
, the non-ohmic current}voltage characteristics were attributed to

a change in the activation energy with increasing "eld and to a mechanism of `activated tunnelinga
[60]. Below, we shall describe another model, which substantiates the possibility of nonequilibrium
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Fig. 3.1. Dependences of the conduction current (1) and electron temperature (2) on the average "eld strength in a 4 nm
gold island "lm.

heating of electron gas in small particles and allows a consistent explanation of all unique
electronic properties of IMFs.

Whatever the mechanism of the conductivity may be, the islands must exchange electrons and in
the general case the current from the ith to the (i#1)th island can be written as

I
i(i`1)

"ePUi(i`1)
(E,¹)D

i(i`1)
(E

x
) dE . (1)

Here U
i(i`1)

(E,¹) is a function that determines the number of electrons with energy E which are
able to pass from island i to island (i#1) at temperature ¹, and D

i(i`1)
(E

x
) is the probability of

the transition for an electron having an energy E
x

connected with the motion along direction x.
If an idealized system of identical islands located at equal distances from each other is placed in an
external "eld, the total current will be equal to the di!erence of currents between the adjacent
islands:

I"eP[Ui(i`1)
!U

(i`1)i
]D(E

x
) dE . (2)

To obtain an explicit dependence of the current on voltage, temperature, the "lm structure and
electronic properties of the islands, it is necessary to specify the model. In principle, charge transfer
between the islands can occur by means of thermionic emission into vacuum [61] or into the
substrate [62], by tunneling through barriers metal}vacuum}metal or metal}substrate}metal
[57,60,63}67], or by transport through impurity levels in the substrate [68]. For the "lms
consisting of islands &5 nm in size separated by distances 2}5 nm, the most probable mechanism
seems to be the tunneling of electrons between the islands. Judging from the strong e!ect of
adsorbed BaO molecules on the conduction current [69] and the weak sensitivity of this current to
the substrate material [6], the tunneling should occur via vacuum.

The non-ohmic conduction current}voltage characteristics can be explained in terms of
nonequilibrium heating of electrons in the IMFs at high electric "elds [64,70]. One further
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Fig. 3.2. A diagram of potential energy of an electron in an island metal "lm in the absence (solid line) and in presence
(dashed line) of electric "eld. See text for explanations.

consequence of electron heating is electron emission from IMFs. Let us consider the concepts of
this model in greater detail.

Suppose we have a linear chain of identical islands with equal spacings between them. The
potential barriers separating the islands are assumed to be parabolic (Fig. 3.2):

;
0
(z)"(gz2

0
/2)!(g/2)(z!z

0
)2 , (3)

where ;
0
(z) is the barrier height in the absence of electric "eld, 2z

0
is the distance between the

islands and g is a parameter. In the presence of an electric "eld the barrier is lowered and its
maximum is displaced:

;
E
(z)"(g/2)[z2

0
!(z!z

0
)2]!eEz"(g/2)[z

0
!(eE/g)]2!(g/2)Mz![z

0
!(eE/g)]2N . (4)

Here ;
E
(z) is the height of the barrier in point z in the presence of the "eld and e is the electron

charge. Usually, the lowering of the barrier is not very strong, so one has z
0
<eE/g and therefore

;
E
(z)"(gz2

0
/2)!eEz

0
!Mz![z

0
!(eE/g)]2N . (5)

It can be seen that under the above assumptions the barrier is lowered by eEz
0
"*;/2, where *;

is the potential di!erence between the adjacent islands. The transparency of such a barrier is

D(E)"GexpC!
E#(*;/2)

e
0 D#1H

~1
, (6)

where e
0
"(h/2p)(g/m)1@2 is a parameter characterizing the barrier shape and m is the electron

mass. Since the Fermi levels of the adjacent islands are shifted by *;, the electrons tunneling to
an island from its neighbour are `hota with respect to other electrons in this island. The
redistribution of the excess energy between all electrons in the island results in a raising of the
electron temperature. In principle, the functions U

i(i`1)
(E,¹) in (1) can be distinct in di!erent

islands. The distinction can be caused, for instance, by di!erent heating of the electron gas. For
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simplicity, we assume the electron temperature to be equal in all the islands. Then the function
U

i(i`1)
(E,¹) can be taken as a Fermi function with an e!ective temperature h

%
(expressed in energy

units), which depends on the power pumped into the island:

f (E)"GexpA
E#u

h
%
B#1H

~1
. (7)

Substituting (6) and (7) into Eq. (2) gives

I"AP
=

~=G1#expC!
E#(*;/2)

e
0 DH

~1

G1#expA
E#u

h
%
BH

~1
dE (8)

with A"4pme*;/(2p+)3.
To obtain an explicit dependence of the conduction current on voltage, temperature and other

parameters, it is necessary to "nd the relationship between the electron temperature, the lattice
temperature and the power fed into the "lm by passing current. The peculiarities of the dissipation
of the energy of electrons in small particles will be treated at length in Sections 5 and 6. Here we
note only that the motion of electrons is ballistic in the particles whose size is smaller than the
electron mean free path in the bulk metal. For this reason electrons lose their energy in collisions
with defects and with the island as a whole when they are re#ected from the potential barrier. The
re#ection is almost elastic and the transferred momentum equals *p"2p, where p is the electron
momentum. Thus the transferred energy is *E"Em/M, where m and E are respectively the mass
and energy of electron and M is the mass of the atom (or the island). It should be noted that the
factor m/M, which determines the part of the energy lost by electron in a collision, remains
somewhat uncertain. However, this fact need not concern us, since the factor enters into a phenom-
enological coe$cient which may be determined from experiment. The number of collisions per unit
time equals 1/q"v/a, where v is the electron velocity and a is the island dimension. Hence the
power transferred from an electron to the lattice is

*P"*E/q&(Jm/M)(E2@3/a) . (9)

The total power transferred by electrons to the whole "lm can be obtained by averaging (9) over
the nonequilibrium component of the electron energy distribution and multiplying the result by the
volume of the islands. Under steady-state conditions, this power must be equal to the power fed
into the "lm P"I;, where ; is the applied voltage. Hence the following expression can be
obtained for the electron temperature:

h
%
"k¹

%
"Jh2

0
#aHI; . (10)

Here h
0

is the lattice temperature in energy units and aH is a coe$cient which is independent of the
"eld and temperature and determines the e$ciency of electron heating. In the case e

0
'h

%
, the

current is carried mainly by electrons tunneling near the Fermi level, because the barrier is rather
steep and its transparency depends on energy less sharply than the electron energy distribution
function. Then the expression for the current becomes

I"Ae
0

exp(!u/e
0
)M1#(p2/6)(h

%
/e

0
)2N exp(*;/2e

0
) , (11)
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where u is the work function. In the opposite case e
0
(h

%
, when the transparency depends on

energy stronger than the distribution function, the current is carried predominantly by electrons
tunneling near the top of the barrier and we obtain

I"Ah
%
exp(!u/e

0
)M1#(p2/6)(h

%
/e

0
)2N exp(*;/2e

0
) . (12)

Thus, the maximum contribution to the tunneling current belongs to the group of electrons
which are located at some distance from the Fermi energy, depending on the shape of the barrier
(characterized by the parameter e

0
) and electron temperature h

%
. If h

%
is low, the tunneling occurs

just above the Fermi level. As h
%
increases, the maximum of the tunneling #ux is shifted to the top of

the barrier. Some contribution to the conduction current can also originate from overbarrier
electrons, but their part seems to be comparatively small (since the emission current is found to be
much smaller than the conduction current, see Section 3.3). All these factors cause the deviation
from the Ohm law.

In work [64], we proposed a method for determination of the model parameters e
0

and aH, and
hence of the electron temperature, from the dependences of the conduction current on the applied
voltage ("eld) and temperature. The typical electron temperature corresponding to beginning of the
deviation of conduction current}voltage characteristics from linearity was found to be about 0.15 eV
(+2]103K) (Fig. 3.1). This model not only explains the variation of the conduction current versus
electric "eld, temperature and work function, but also allows one to understand the main regularities
of electron emission from the island "lms, which will be discussed in the following sections.

To conclude, a few additional comments are in order. Proposing the model of electron heating
described above, we were guided by the following considerations. The deviation of the conduction
current from Ohm's law and the occurrence of the electron and light emission (discussed in detail
below) set in at approximately the same voltage applied to the "lm. This suggests that these
phenomena should have a common cause. Such a cause may be the generation of hot electrons.
Taking into consideration the weak temperature dependence of the conduction current in
the Ohmic region, we have assumed the tunnelling conduction mechanism. In the case of the
thermionic mechanism, the conduction current would be strongly dependent on temperature,
which is not observed.

The next comment is connected with the work function of the islands. We have assumed that the
work function as well as the Fermi energy are the same in all the islands. However, this assumption
can be not valid for very small islands where the e!ects of the Coulomb blockade can be essential.
Generally, such e!ects should not be pronounced in the conductivity of two-dimensional en-
sembles of islands at room temperature. It is known (see e.g. [71]) that two major prerequisites
must exist for the observation of the Coulomb blockade: (1) one should provide the condition
e2/2C<k¹ (C is the capacitance of an island with respect to its environment); (2) the tunneling
resistance of the gaps between the island and its neighbors (`contactsa) must be larger than the
resistance quantum h/2e2 so that the electrons are well localized on the island. The "rst condition is
ful"lled only for extremely small islands (with the radius [3nm at 300K). The second condition
demands a favorable arrangement of the islands. A further obstacle to observing e!ects of the
Coulomb blockade in the conductivity of two-dimensional ensembles of islands is caused by the
possibility for electrons to bypass the blocked islands and thus to "nd the paths of a lower
resistance. This consideration is corroborated by the fact that the Coulomb blockade is observed
rather easily in the single island chains [72].

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 91



Fig. 3.3. Dependences of the conduction current I
#

and electron emission current I
%

on the voltage applied to an Au
IMF. Inset: Dependences of electron emission current I

%
on the average electric "eld applied between the IMF (cathode)

and anode. The average electric "elds within the "lm are respectively 103 V/cm for curve 1 and 4]103 V/cm for curve 2.

Fig. 3.4. Dependences of the electron emission current I
%

on the power fed into "lm (P"I
#
;) and the voltage applied

across the "lm (;). In plots 1 and 2, the data for two di!erent "lms are presented in the coordinates ln I
%
versus P~1@2. In

plots 1@ and 2@, the same data are presented in the coordinates ln I
%
/;2 versus 1/; (from Ref. [6]).

3.3. Electron emission from IMFs under conduction current excitation: integral characteristics

Electron emission from IMFs is always observed in the non-Ohmic region of the conduction
current}voltage characteristic. Typical dependences of the emission current on the voltage applied
to the contact electrodes of the "lm and on the anode (extracting) voltage are depicted in Fig. 3.3.
Such dependences have been used by many authors to consider the mechanism of the electron
emission. Two alternative mechanisms have been discussed: "eld emission and emission of hot
electrons. The former model [73,74] considers that, despite the low value of the voltage applied to
the "lm, rather high electric "elds can exist in the narrow gaps between the islands. The "elds can
have elevated values near the smallest islands and in the emission centers where the potential drop
is found to be enhanced [73,75}78]. These "elds can give rise to "eld emission currents #owing
from one island to another (in other words, the conduction current should be "eld emission by its
nature), and it may be imagined that a part of this current can be sucked o! by the extracting
electrode (anode). Qualitatively, this model may seem rather reasonable. In support of this
interpretation its adherents argue that in a number of cases the dependences of the emission
current, I

%
, on the voltage applied to the "lm, ;, appear linear when plotted in the

Fowler}Nordheim (`"eld-emissiona) coordinates lg (I
%
/;2) versus 1/; (see e.g. Fig. 3.4). Notice

that; is the voltage between the contact electrodes of the "lm and not the anode voltage;
!
, which

is kept constant in the experiment. (Incidentally, I
%

as a function of ;
!

is nonexponential and
exhibits a tendency to saturation at high values of;

!
(Fig. 3.3).) It is therefore tacitly assumed that
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the part of the conduction current branched o! to the anode remains constant as the current varies.
It has to be admitted, however, that results similar to those depicted in Fig. 3.4 can hardly be
considered as a convincing proof of the "eld emission model. The range of the voltages in which
such dependences can be recorded is usually rather narrow, so it is not very surprising that
a straight line can be "tted more or less satisfactorily to log I

%
/;2 within this range. Further still,

this model is in poor agreement with experimental data on the e!ect of adsorbed layers: as one
covers an IMF with an overlayer reducing its work function, the conduction current increases
several-fold (or by an order of magnitude at most) whereas the emission current grows by a few
orders of magnitude (see Section 3.5 for more details). This "nding is in evident contradiction with
the expectations of the "eld emission model that the electron emission current should vary
proportionally with the conduction current (or at least to its "eld-emission component). The results
[75] about the high sensitivity of the electron emission current to the deformation of the "lm
substrate (`the tensoe!ecta) are also poorly compatible with the "eld emission model [73] which
suggests the emission from nanosized ([102nm) island `cathodesa to large islands serving as
`anodesa and located at a distance of &1 lm from the `cathodesa. It is well known from the "eld
emission experiments that in such a geometry the emission current should be weakly dependent on
the cathode}anode spacing and therefore on the substrate deformation. There are also discrepan-
cies of the data on the temperature dependence of the electron emission from IMFs [79] with
predictions of the "eld emission model.

Let us turn now to the model of hot electrons. Recall that it also considers the tunneling of
electrons between the islands, but, contrary to the "eld emission model, the su$cient transparency
of the potential barriers is attributed just to small inter-island spacings rather than to the e!ect of
the external electric "eld. This model predicts [70] (see also Section 3.2) that the emission current
should be a linear function in the coordinates log I

%
versus 1/(P)1@2, where P is the power pumped

into the emission center. Some experimental results obtained in the case of the conduction current
excitation of thin "lms are consistent with this prediction (Fig. 3.5) [6] while others are not [73,74].
(It is important to note that actually one plots the dependence of log I

%
versus reciprocal square

root of the total power fed into the "lm, which is believed to be proportional to the power fed into
individual emission centers.)

Obviously, a vulnerable point of the above experimental arguments is that characteristics of the
phenomena occurring in the emission centers, which are 41lm in size and take just a minor part
of the total "lm surface area, are correlated with integral values such as the voltage or the power
applied to the whole "lm. It is therefore necessary to test both the models on a larger set of
experimental data including the electron energy distributions, the electron emission stimulated by
infra-red irradiation and the light emission from IMFs. This will be done in the following sections.

3.4. Electron emission from a single emitting center

For typical geometries of IMFs, the electroforming procedure usually results in emergence of
many emission centers. It is clear that examination of a single center is much more informative
from the physical standpoint than analysis of integral characteristics which contain contributions
from a set of the centers. (In addition, their number can change if the voltage is varied within
a broad range.) The investigation of individual centers is especially important when it is necessary
to analyze the electron energy distribution. If the integral retarding "eld characteristics of the
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Fig. 3.5. Dependence of the electron emission current I
%
from an Au island "lm on P~1@2, where P"I

#
; is the power fed

into the "lm [6].

Fig. 3.6. Retarding-"eld curve of electron emission current in a device with plane-parallel geometry.

Fig. 3.7. Schematic of a device for recording the retarding-"eld curves of electron emission from a single emitting center.

emission current are measured in a device of the #at capacitor type, one usually records curves
with two saturation terraces (Fig. 3.6). This indicates that the current comes from two groups
of emission centers located in di!erent areas of the "lm (typically near the contacts) having di!erent
potentials. In the case when the centers are grouped near one of the contacts only, the retarding
"eld curves have an ordinary shape with one saturation level. To obtain such a curve for an
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Fig. 3.8. Retarding-"eld curves of electron emission current from a single emitting center at various voltages applied to
the "lm: 1}10V; 2}15V; 3}17.5V; 4}20V; 5}24V; 6}30V.

Fig. 3.9. Energy spectra of secondary electrons emitted from the contact electrodes (1,2) and of electrons emitted from
a center in an Au "lm (3). The energy of the bombarding electrons is 25 keV and the voltage applied to the "lm is 2.5V
[82]. Inset: schematic of the sample under study (1 and 2 are contact electrodes).

individual center, a device of spherical geometry (`a spherical capacitora) was used which allowed
the electrons emitted from a selected center to be directed into the energy analyzer (Fig. 3.7)
[43,80]. The device represented a spherical glass bulb 150mm in diameter whose inner wall was
coated with a transparent conducting layer and a cathodoluminescent screen. The bulb had
a probe hole in the screen and a retarding "eld analyzer placed behind it. The "lm studied was
deposited onto a glass sphere 2 mm in diameter located at the end of a glass rod which could be
moved with a manipulator. Fig. 3.8 depicts examples of the retarding "eld curves recorded for an
emission center at various voltages applied to the "lm. The width of the steep (`retarding "elda)
section of the curve, *<, is determined by the spread in electron energies, the potential drop within
the center and the resolution of the analyzer. *< was found to be only weakly dependent on the
voltage applied to the "lm which means that only a small part of this voltage drops across the
center. Anyway, the retarding "eld curves showed that the sum of the electron energy spread and
the voltage drop within the center does not exceed &3 V. The minimum value of *< recorded
experimentally was &1V.

The electron energy distribution was also studied in a scanning electron microscope equipped
with a retarding "eld analyzer having an immersion objective [81,82]. The experiments were
carried out with gold IMFs which were prepared within a 20lm gap between two gold contact
electrodes. The secondary electron emission from the contacts was used for calibration of the
energy scale of the analyzer. To minimize the e!ect of electric micro"elds existing over the islands
[76] on the energy spectra recorded, the measurements were made at voltages on the "lm equal to
2}3.5V (the emission current was at the level &10~12A). Fig. 3.9 shows the energy distributions
for electrons originating from an emission center and for secondary electrons emitted from the
contacts. The position of the energy spectrum of electrons between the curves corresponding to
the secondary emission from the contacts is determined by the potential drop across the "lm. The
high energy wing of the energy distribution was found to be Maxwellian, and the electron gas
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Fig. 3.10. Current}voltage curves for conduction current (1}4) and emission current (l@}4@). Curves 1 and 1@: clean Au "lm;
curves 2}4 and 2@}4@: Au "lm with various BaO overlayers.

temperature within the emission center was estimated at ¹
%
&3400K [82]. This value agrees by

order of magnitude with the electron temperatures evaluated by other methods [83}85].

3.5. Ewect of overlayers on the conductivity and electron emission from IMFs

Let us start with electropositive overlayers. The evaporation of BaO on island "lms leads to
a signi"cant increase of the conduction current (Fig. 3.10, curves 2}4) and to a drastic, by several
orders of magnitude, growth of the emission current (Fig. 3.10, curves 2@}4@). Both the e!ects can be
ascribed to the reduction of the work function. The variation of the work function was monitored
by recording the shift of the red boundary of photoemission from a continuous Au "lm deposited
adjacent to the island "lm and exposed to the same BaO molecular beam.

The model of nonequilibrium heating of electrons in small particles (Sections 3.2, 5 and 6)
interprets the observed electron emission from IMFs as the Richardson emission of the hot
electrons. With this assumption we used the work function dependence of the emission current to
estimate the electron temperature ¹

%
and obtained its value at +2000K. Contrary to this, the

lattice temperature of the islands remains much lower which ensures the long-term operation of
such IMF cathodes.

If the BaO coating over an IMF is only about one monolayer thick, the emission current, which
is initially very strongly enhanced, decreases with time to a new steady-state level which still
remains much higher than in the absence of the BaO layer. The current can be increased again by
repeated evaporation of BaO. The measurements of the emission current}voltage curves for
individual emission centers performed in a quasi-spherical energy analyzer have shown that the
decay of the emission current is caused by some work function increase [86]. Probably, this can be
associated with the "eld induced drift of BaO molecules out of the emitting center. It should
be recalled that in the case of a polar adsorption bond, the direction of the "eld drift is dependent
on the mutual orientation of the electric "eld and the dipole moment [87,88]. To ensure a long-
term e!ective electron emission, with an emission-to-conduction current ratio of +10}15%,
it is necessary to provide a continuous supply of BaO to the emitting center. This e!ect can be
achieved by deposition of island "lms onto a substrate previously coated with a thick BaO layer
(see Section 8).
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Fig. 3.11. Current}voltage curves of conduction current (1) and electron emission (2) for an Au island "lm. (1@) and (2@) are
the same characteristics after deposition of organic molecules.

A similar e!ect of BaO as well as Ba overlayers on the electron emission was also found for
graphite island "lms. These "lms were excited both by the conduction current and by pulsed CO

2
laser irradiation (j"10.6lm, q"200 ls) (Section 3.7).

Adsorption of BaO molecules represents a comparatively simple example of the e!ect of
overlayers on properties of IMFs. There are, however, more complicated cases. Early experiments
with IMFs detected that quite often the conductivity current becomes unstable when the "lm is
kept in vacuum obtained using oil di!usion pumps [89,90]. In particular, under certain conditions
the conduction current}voltage characteristics were found to become nonmonotonic (N-shaped),
i.e. to reveal a voltage-controlled negative resistance (VCNR). An example of such characteristics is
given in Fig. 3.11. It is known that in MIM (metal}insulator}metal) structures, the VCNR and
switching from low-resistanse to high-resistance state and vice versa are frequently observed e!ects
(see e.g. [91}93]). Obviously, the systems considered (IMFs and MIM structures) bear some
similarity to each other. This similarity becomes even more far-reaching if one considers that
electroforming of the MIM structures can produce current channels which contain small metal
particles arising due to the partial destruction of one of the electrodes [94,95]. A detailed review of
the VCNR and switching e!ects in the island "lms (planar MIM diodes) and in sandwich MIM
diodes was given by Pagnia and Sotnik [8], so we shall discuss here only the points which received
less attention in [8] as well as some results of later works.

Major experimental "ndings regarding VCNR in island metal "lms can be summarized as
follows.

1. VCNR e!ects have not been found for the island "lms prepared in ultrahigh vacuum on well
outgassed substrates. A prerequisite to the observation of such e!ects is the presence of speci"c
kinds of adsorbates on the "lm surface, in particular of some organic compounds or of water
containing their traces [96]. There are data suggesting that at least in some cases it is just the
hydrated molecules of these compounds that may cause the occurrence of VCNR [41]. It is also
important to add that, in order to prepare an island "lm exhibiting VCNR, it is necessary to apply
an appropriate voltage to the "lm either during or immediately after the deposition of the
overlayer, i.e. to `polarizea it.
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Fig. 3.12. Conduction current}voltage curves for an Au island "lm covered with a naphthalene layer. ODA: low-
resistance state. BCO: high-resistance state. OC: region of "eld memory.

2. Electron microscopic investigations performed with a resolution of 2}3 nm did not reveal any
structure changes in the "lm during its transition from low-resistance to high-resistance state or in
the opposite direction [41]. The "lm structure starts to show visible changes only when the applied
voltage exceeds several-fold its value corresponding to the current maximum in the current}voltage
curve. However, in this case the "lm is irreversibly destroyed.

3. Scanning electron microscopy was used to visualize the potential distribution within the "lms
displaying VCNR behaviour [77]. The distribution was found to be uniform in the low-resistance
state, i.e. in the voltage range preceding the negative di!erential resistance. In the high-resistance
state, potential jumps localized within the regions of 40.1}1.0lm were observed. Later STM
investigations [78] con"rmed the existence of the potential jumps and showed that regions of their
localization are even narrower.

4. In the low-resistance state of the "lms with VCNR, the temperature resistance coe$cient in the
interval 20}300K is positive and close to its values typical of metals. This coe$cient becomes
negative in the high-resistance state and its value is characteristic of the clean IMFs [97].

5. The VCNR behaviour disappears if the "lm coated with the overlayer is annealed at
500}600K. However, this behaviour is restored after repeated adsorption.

6. The return trace of the I-U-hysteresis loop (Fig. 3.12), segment BA' is sluggish. If this trace is
passed fast (in a time (0.1 s), the current changes along the path BCO, and the high-resistance
state can keep inde"nitely long (a `"eld memorya). To restore the low-resistance state, it is su$cient
to increase the voltage by 0.1}0.2V with respect to point C. Then the further change of the current
proceeds along path ODA.

7. The shape of the I-U-curve depends on the number of the current channels in the "lm (equal to
the number of the emission centers } see Section 2.4) and on the spread in their properties. If these
properties are su$ciently uniform or if only one current channel is present, the transition from the
high- to low-resistance state becomes extremely sharp indicative of a switching process [72].
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Fig. 3.13. Current}voltage curves of conduction current I
#

(1), electron emission current I
%

(2) and light emission
intensity I

L
(3) for an Au island "lm covered with a stearon layer. Curve 4 shows a conduction current}voltage curve

I
#

versus ; for a chain island "lm covered with an organic adsorbate. Units at the ordinate axis are di!erent for all
curves.

8. If in the low-resistance state the temperature of the "lm is lowered to (100K, the negative
resistance segment is observed only once and further changes of the current proceed along path
OCB (Fig. 3.12). The VCNR behaviour is restored as temperature is raised above 100K. Therefore
such "lms possess a `temperature memorya.

9. The shape of the I-U-curve and the height of the maximum are sensitive to the pressure of
residual gases [8]. If an IMF kept in the low-resistance state is coated with a thin dielectric layer,
the VCNR segment OAB can be passed only once. The dielectric layer irreversibly prevents the
restoration of the low-resistance state and the return trace proceeds along BO (Fig. 3.12). These
results demonstrate that the VCNR behaviour is determined by surface electronic processes and
not by processes in the substrate as was supposed in early studies [57,98].

10. The position of the maximum in the current}voltage curve shifts to lower voltages when
a pulsed instead of a constant voltage is applied.

11. In the VCNR region, one observes electron and light emission from the "lm.
Here we shall exemplify the above regularities with data obtained recently for gold IMFs coated

with stearone overlayers [69]. Stearone [(C
17

H
35

)
2
CO] was evaporated onto island "lms with

previously formed current channels and emission centers. The evaporation was performed while
a voltage of +10}15V was applied to the "lm. Stearone molecules adsorbed under such
conditions induce an enhancement of the conduction current, and, what is more important,
a VCNR section appears in the conduction current}voltage curves at voltages 4}6V (Fig. 3.13a,
curve I

#
). Simultaneously the characteristics of electron and light emission are also changed

(Fig. 3.13, curves I
%

and I
L
). Quite analogous e!ects were observed with naphthalene (C

10
H

8
)

overlayers evaporated on the island "lms [99].
As noted above, organic admolecules increase the conduction current and bring about the

VCNR behaviour only upon holding the "lm under a voltage of 10}15V either in the course of
evaporation of the organics or after it. (By contrast, BaO enhances the conduction current without
such procedure). It has been suggested that organic species are polarized in the high electric "eld
existing near the islands (estimated at 105}106V/cm) and pulled into the emission centers where
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they self-assemble into thin quasi-polymeric "laments spanning the gaps between the islands [45].
It should be recalled that the formation of molecular waveguides for electrons was observed a few
decades ago in experiments with organic molecules adsorbed on metal tips in the "eld emission
microscope [100,101]. The average diameter of the polymeric "laments, oriented along the "eld
lines, was estimated at several nm [102], i.e. the same as the size of nano-islands. If similar organic
bridges are formed in IMFs, the current density in them should be at least &105A/cm2. Probably,
such a high current density could be passed without destroying the "laments because of the very
e$cient withdrawal of the Joule heat to the substrate. However, at higher current densities the
conducting "laments can be melted or even evaporated which may cause a decrease in the
conduction with increasing voltage. When the voltage is reduced, the temperature decreases and
organic conducting bridges can be restored (replenished) by migration of the adsorbate from
adjacent areas to the emission centers. This `desorption/di!usiona model might, in principle,
explain qualitatively both the occurrence of the N-shaped I

#
!; curve and its repeated reproduc-

tion ('104 times) while cycling the voltage [39].
However, the data on the light emission from island "lms covered with organics (typical for

electroluminescence in semiconductor structures } see Section 4) impel consideration of an
alternative model. We suppose that organic admolecules arrange themselves into semiconducting
bridges (which may be poorly ordered) between the islands. As a consequence, the VCNR region in
the conduction current}voltage characteristics can arise through one of the mechanisms suggested
for switching phenomena in semiconductors: thermal (structural), electronic or combinations of
these. This interesting topic goes beyond the scope of our paper and we refer the reader to a recent
review focused on switching in semiconductor thin "lms [103].

It should be noted that the slope of the VCNR section is an integral characteristic of the whole
"lm which contains many current channels with distinct properties. Therefore, the peculiarities
seen in the VCNR region (see small steps and terraces in curves shown in Fig. 4.6, Section 4) may
originate from contributions of di!erent channels. In the cases when the current channels have
rather close parameters, e.g. in the chain island "lms, the VCNR section appears very steep so that
one actually observes a switching regime [39,72].

A few works have been devoted to electron emission from the island "lms showing VCNR
behaviour [72,79,96,104,105]. For example, Blessing and Pagnia [104] utilized a photoemission
microscope with a spatial resolution of 100 nm and a Moelenstedt energy analyzer with an energy
resolution of 0.5 eV (at acceleration voltage 20 kV) to study spatial and energy distribution of
electrons emitted from Au IMFs. According to their interpretation, electron emission in the VCNR
region is provided by hot electrons (perhaps with some contribution from microplasmas), while at
higher voltages they argued for the "eld emission mechanism (see Section 3.3 for a discussion of this
model). In later works of this group [105}108], a model of carbon islands has been suggested. They
can arise in an oil-pumped vacuum due to cracking of residual hydrocarbons and subsequent
graphitization. Owing to injection of fast electrons through tunneling junctions, the electron
temperature in the carbon islands can be elevated up to &4000K (as estimated from photon
emission spectra [106]) which results in thermionic emission of hot electrons. (See also work [79]
on the emission properties of carbon island "lms.) The carbon islands can be destroyed at high
temperatures by residual oxygen and again be built up at lower temperatures. However, in the
context of the experimental results listed above and obtained for various `coateda island "lms
showing VCNR, the model of carbon bridges (islands or "laments) seems to be appropriate only in
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Fig. 3.14. (a) Structure with the island Si "lm; (b) structure for observation of electroluminescence of porous silicon;
(c) I!; curves for conduction current of clean silicon island "lm (1), BaO/Si island "lm (2) and for emission current
from BaO/Si island "lm (3). (A) and (B) are light emission spectra for structures a and b.

some particular cases. The general conclusion is that it cannot be accepted as a universal
explanation of the VCNR behaviour of the island "lms.

The results presented in this section show that deposition of various overlayers on nanodispersed
thin "lms allows a wide-range modi"cation of their properties. In particular, using this approach
one can obtain planar composite structures whose characteristics combine the peculiar properties
of nanoparticles and of the substance "lling the gaps between them.

3.6. Electron emission from silicon island xlms

In this section, we present some data which demonstrate that in semiconductor island "lms
phenomena can occur analogous to those observed in the case of metal "lms. If the model of hot
electrons which is discussed in this review in application to metals is true, electron and light
emission from small semiconductor particles caused by pumping energy into them should also be
expected. Indeed, nonequilibrium heating of electrons in semiconductors (contrary to bulk metals)
is a common phenomenon [109,110].

The experiments have been performed with Si. To obtain a Si island "lm, we "rst deposited
epitaxially a continuous single-crystal n-Si "lm (100nm thick, 10) cm) on a sapphire substrate.
The continuous "lm had in the middle a section 50lm wide where its thickness was 50 nm. The
contacts were evaporated on the thicker parts of the "lm. The "lm was "rst outgassed at
&10~8Torr and then a su$ciently strong current was passed through it which led to the
formation of a Si island "lm in the thinner part of the sample. For comparison, some experiments
were made with a porous Si sample prepared by electrochemical etching.

The conduction current I!; curves for clean silicon island "lms are quite similar to those
recorded for metal island "lms (Fig. 3.14), but neither electron nor light emission is observed until
the work function of Si islands is reduced by some appropriate overlayer (e.g. BaO). Thus, the hot
electrons which can be generated in Si islands cannot pass into vacuum if the Si surface is clean.
This result resembles the experiments carried out in an attempt to obtain electron emission from Si
p}n-junctions cleaved in high vacuum [111]. In that case, no emission was observed, too, which
was attributed to the unfavorable relation between the impact ionization energy (2.25 eV) and the
electron a$nity (3.6 eV) in Si. Due to the low impact ionization energy, the electrons cannot be
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heated enough to overcome the surface barrier. However, the emission emerged upon reducing the
Si work function by a few eVs.

In the case of Si island "lms, the evaporation of a BaO overlayer lowering the work function by
2.2}2.5 eV resulted in a substantial enhancement of the conduction current and in the appearance
of electron and light emission (Fig. 3.14; curve 3).

We have compared these results with data on electroluminescence and electron emission from
a porous Si sample prepared by electrochemical etching of p-Si (0.01 ) cm) plates. The size of the
pores and the thickness of the walls between them was 5}10 nm. A sandwich test structure was used
(Fig. 3.14b). The electroluminescence and electron emission were observed for as-prepared samples
(no activating coating was needed). The spectrum of the electroluminescence of the porous Si is
rather similar to that recorded for the Si island "lm covered with BaO (Fig. 3.14; curves A, B). It
was found, however, that the electroluminescence, photoluminescence and the electron emission
disappear after outgassing the porous Si sample. They could be restored after H

2
O adsorption

[112}114], which demonstrates that surface conditions strongly a!ect the behavior of porous Si. It
should be recalled that there is a number of reports on electron emission from porous Si (see e.g.
[115,116]). The photon emission from porous Si has also been recorded in the STM [117].

3.7. Electron emission from IMFs under infra-red laser excitation

As noted in Section 3.2, the physical interpretation of emission experiments with the island "lms
excited by passing current cannot be accepted as conclusive. It was therefore desirable to obtain
additional data on this phenomenon, in particular, to examine the electron emission from the "lms
subjected to an alternative (currentless) excitation. Such an excitation has been e!ected by infra-red
laser irradiation [2}4]. In Section 7, we give detailed physical arguments that using a su$ciently
powerful IR laser one can very e$ciently pump energy into small metal particles having a special
shape.

A pulsed CO
2

TEA-laser (j"10.6lm, q"0.2}1.0ls, f"1}30Hz) was used to irradiate Au, Cu
and graphite island "lms on Si [4,118]. The laser beam intensity was measured with a pyroelectric
detector. Neutral "lters were utilized to attenuate the beam irradiating the "lm. In the experiment,
the same area of the "lm was exposed to the beam whose intensity was progressively increased. The
structure of the "lm was investigated at di!erent stages of the exposure in an electron microscope.
The electron and photon emission set in as the power density P reaches a value of about
104W/cm2. It is known that in the case of bulk metals similar e!ects appear at P'107W/cm2 and
are ascribed to various mechanisms (thermionic and "eld emission, many-photon photoe!ect)
[119,120]. Within the range of 104}105W/cm2, the emission current from the island "lms is stable
and the shape of the emission pulses reproduces quite closely that of the laser pulses. The delay time
of the emission is estimated at (2]10~8 s. The work functions of the materials under study
(+4.5}5.0 eV) are by a factor of &40 higher than the quantum energy hl"0.12 eV at
j"10.6lm. Thus, the photoemission, both one-photon and many-photon, can be excluded as
a possible emission mechanism. The "eld emission seems also improbable due to low electric "elds
(&104V/cm) in the laser beams used. Taking into account the above work functions and the
saturation vapour pressures of the materials, one is led to the conclusion that the thermionic
mechanism, too, cannot ensure the observed stable current densities of &10~2A/cm2, at least for
Au and Cu "lms. The thermionic emission does come into e!ect, but at much higher power
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Fig. 3.15. Logarithm of the electron emission current from a carbon island "lm on Si excited by a CO
2

laser as a function
of P~1@2.

densities (&5]105W/cm2) at which the emission pulses become signi"cantly lengthened and the
islands are quickly destroyed thereby causing the emission to decay.

Fig. 3.15 shows the emission current as a function of the power density in the laser beam [121].
When plotted as log I

%
versus P~1@2, this dependence is seen to be linear in agreement with the

theory [122] (see Section 3.3). We recall that such a behaviour of the emission current follows from
the calculations which predict that, at large power densities fed into an island and independent of
the mechanism of excitation, the electron temperature should be proportional to P1@2. In other
words, one obtains a Richardson dependence of emission current on the hot electron temperature.
(The lattice temperature is much lower } see Section 5.)

Energy distributions of electrons emitted from IMFs under IR laser irradiation were investigated
in work [123]. The gold IMFs were prepared on a Si wafer coated with a thin layer of silicon
nitride. The sample was placed into a scanning electron microscope and the same energy analyzer
was employed which had been used earlier to measure the energy spectra of electrons emitted from
IMFs under current excitation (Section 3.4). The half-width of the energy distribution of electrons
in the case of laser excitation was found to be +0.6 eV. This value was considerably larger than the
estimated instrumental width and therefore corresponded, roughly speaking, to an electron
temperature of &103K. However, the distribution was non-Maxwellian. Discussing the data in
terms of the model of hot electrons, the authors [123] supposed that the non-Maxwellian character
of the distribution may be caused by the fact that the measured emission current contains
contributions from many islands which have di!erent electron temperatures.

Thus the whole set of data suggests that the electron emission observed at moderate irradiation
intensities is most probably due to nonequilibrium heating of electrons in metal islands. This model
is also corroborated by the following "ndings: (1) the energy spectra of the emitted electrons reveal
the existence of electrons with energies up to +3 eV (at P"5]105W/cm2); (2) the spectra of the
concomitant light emission, if they were roughly ascribed to the equilibrium radiation from the
islands, would correspond to ¹+1000K which is too low to provide any appreciable thermionic
(equilibrium) emission. Strictly speaking, however, the light emission spectra of the island "lms do
not at all obey Planck's law and show instead two or three more or less pronounced maxima
[124,125] (see also Section 4). A detailed theoretical analysis has revealed that the light emission
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may be caused by (i) bremsstrahlung, (ii) the inverse of surface photoelectron emission, (iii) inelastic
tunneling of electrons and (iv) radiative decay of surface plasmons [126].

From the practical viewpoint, the electron emission from the island "lms is quite stable at
moderate power densities (up to 105W/cm2 for Au and 106W/cm2 for graphite "lms). Thus such
"lms can be utilized as photocathodes to visualize the intensity distribution in IR laser beams (see
Section 8).

4. Light emission from island metal 5lms

4.1. Light emission from clean IMFs

Here we shall "rst consider the light emission from IMFs which occurs under conduction current
excitation. We recall that both electrons and light are emitted from the same centers which has been
demonstrated in experiments comparing the relative position of the luminous spots on the "lm
with the pattern produced by emitted electrons on a screen (see Section 3). This statement has been
convincingly corroborated by measurements which have detected the existence of almost full
correlation between the low-frequency #uctuations of the electron emission current and light
intensity [127] (Fig. 4.1). The light emission as well as the electron emission starts at the voltages
where a deviation from Ohm's law becomes apparent (Fig. 4.2). The light emission appears without
perceptible time lag on applying voltage to an electroformed "lm. The emitting centers are readily
visible and may be coloured di!erently within the same "lm. Fig. 4.3 shows typical spectra of light
recorded from two simultaneously emitting centers in an Au island "lm (curves 1 and 2) [127]. It is
seen that the spectra are rather broad and sometimes consist of distinct bands. A similar shape of
the spectra has been found for silver island "lms (Fig. 4.4). The existence of several intensity
maxima may suggest that a few light emission mechanisms are operating in parallel. Theoretically,
one can predict that the light emitted by IMFs contains contributions from intraband quantum
transitions, bremsstrahlung, inverse surface photoe!ect and plasmon-mediated radiation (the
plasmons being generated both in inelastic tunneling and by hot electrons). We shall address this
question in more detail in Sections 5 and 7. For a chain island "lm (Fig. 4.3, curve 3), the light
emission spectrum is considerably narrower.

Now, let us compare the above data with light emission spectra measured for other related
systems. In particular, one can readily see an obvious similarity between a pair of adjacent metal
islands on a dielectric substrate and a metal}insulator}metal (MIM) structure as well as a tunnel
gap in STM. The di!erence is that the island structure is more open than the MIM structure, and
two islands are separated from each other both by a gap on the insulator surface and by a vacuum
gap. Therefore, the comparison of the characteristics of the objects listed above may be meaningful.
The light emission from MIM tunnel junctions has been investigated in many works (see e.g.
[67,128}135]). The spectra obtained have been attributed mainly to the radiative decay of surface
plasmon-polariton modes excited by inelastic electron tunneling. There are also experimental
arguments in favor of the radiative decay of surface plasmons that are generated by hot electrons
injected into one of the metal electrodes without energy loss in the tunneling gap [132].

In Fig. 4.3 we compare spectra of the light emission from an Au IMF (curves 1 and 2) with the
spectra recorded by Berndt et al. from a tunnel gap between an Au (110) surface and W tip in
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Fig. 4.1. Time #uctuations of the electron emission current (I
%
) and of integral light intensity (I

1)
) recorded at various

values of power fed into a gold island "lm: (a) 0.02W; (b) 0.04W; (c) 0.2W [6,127].

Fig. 4.2. The current}voltage curves of the conduction current (I
#
), electron emission current (I

%
) and light intensity (I

1)
)

on the voltage applied to the "lm.

Fig. 4.3. Light emission spectra: (1) and (2) for two emitting centers in the same Au "lm; (3) for a chain Au island "lm;
(4) and (5) for an Au/W tunnel gap in STM [136,137].

Fig. 4.4. Light emission spectra: (1) for an individual emitting center in a silver IMF excited by conduction current; (2) for
the same "lm excited by electron bombardment (50}200 eV); (3) for a Ag-tip/Ag(111) tunnel gap [138].
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a scanning tunneling microscope (curves 4 and 5) [136,137]. The STM spectra were taken at
various tip bias voltages, and one can see some resemblance between them and the IMF spectra,
although the latter are more complex in shape. A spectrum for an Ag IMF having a single light
emitting center is juxtaposed in Fig. 4.4 with a spectrum of an Ag-Ag(111) tunnel gap in a STM
[138]. This comparison is of special interest, because the STM data relate to the case when both the
tip and the sample were made of the same material (Ag). A rather close similarity in some features of
the spectra is evident. The photon emission spectra recorded in a STM are interpreted in terms of
radiative decay of tip-induced plasmon modes excited in inelastic electron tunneling [136}147].
There are good reasons to believe that similar localized plasmons can form and decay in the tunnel
gap between the adjacent nano-islands. However, the spectrum for the IMF has a few peaks (with
wave lengths corresponding to photon energies 3.5, 2.5 and 1.9 eV). In particular, the ultraviolet
peak (j+350 nm, hl"3.5 eV) coincides with the maximum in the photon radiation observed
under electron bombardment of the Ag island "lm from an external electron source. Thus, we hold
to the view that several maxima seen in the photon spectra of IMFs may indicate the operation of
diverse physical mechanisms of light emission from these "lms. This possibility can originate from
the generation of hot electrons which are able to induce electromagnetic radiation due to various
e!ects (see Section 5). As mentioned above, the spectra of the emitting centers in the chain island
"lms are usually considerably narrower and exhibit only one maximum [69] (Fig. 4.3, curve 3).
This behaviour seems to re#ect the fact that conditions of electron and light emission in the chain
"lms are more uniform than in the `irregulara "lms.

The light emission spectra were also investigated for IMFs prepared of Ag, Cu, Mo, Bi, Pd and
some other metals. The "lms were excited both by conduction current [6,148] and by low-energy
electron bombardment (`cathodoluminescence regimea) (Fig. 4.4) [6,149}151]. Recently, such
measurements for Ag IMFs were carried out in a wider frequency range using a more sensitive
CCD detector system [152}154]. The Ag island "lms were prepared by vacuum evaporation and
by a gas aggregation method [155]. It was found that the light emission spectra are independent of
the manner of preparation of IMFs and the total intensity of radiation is growing with increasing
voltage applied to the "lm;. The most pronounced intensity maxima are located in the red region
(j+600}730nm). It is important to note that the light emission in this region (hl+1.7!2.1 eV)
occurs even in the case when the voltage is as low as 1 eV. This result is readily explicable in the
framework of the model of hot electrons (see Sections 3, 5 and 6). Starting from ;"12 eV, new
features (in addition to the intensity maxima in the range 600}730 nm) appear in the ranges
300}460 and 900}950nm. In particular, the peak emerging at j+320nm (hl+3.9 eV) corres-
ponds to the energy of plasma oscillations. It is supposed [152,153] that the number of the hot
electrons with energies su$cient to excite the plasmons, which generate photons in their radiative
decay, may be too small at ;(12 eV. The absolute and relative intensities of the high energy
radiation maxima increase with increasing;. The features observed in the near infra-red region are
more intense than that recorded at j+320 nm and are ascribed to the processes of inelastic
tunneling and re#ection of hot electrons.

The dependence of the light emission spectra on the size of the Pd particles bombarded by
electrons at E"102}103 eV was recently investigated in [150]. The average size of Pd particles was
varied in the range 0.5}7nm. The spectra were recorded in the range hl"1.2}6.2 eV, so the
possible light emission stemming from the radiative decay of plasmons (hl"7.3 eV for Pd) could
not be detected in these experiments.
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Fig. 4.5. Inset: conduction current I
#
, emission current I

%
and light intensity I

L
versus AC voltage applied to an Au island

"lm covered with stearone. Scales for I
#
, I

%
and I

L
are di!erent. (1) and (2) are light emission spectra in rising and falling

section of the I
#
!; curve, respectively.

Fig. 4.6. Hysteresis loops for the conduction current (1) and light intensity at j"615nm (2) recorded for an Au "lm
covered with stearone. Voltage frequency: 500Hz. Sweep time: 2 min.

4.2. Ewect of overlayers on light emission from IMFs

The BaO deposition within the limits of a monolayer a!ects (increases) mainly the intensity of
the emitted light while its spectrum remains almost unchanged. However, as noted in Section 8.1,
the long-term functioning of IMF cathodes can be achieved by their fabrication on substrates
previously coated by a thick BaO layer. In such a case, especially when large emission currents are
extracted, one observes signi"cant changes in the spectrum of the emitted light due to electro-
luminescence of BaO itself.

In experiments with stearone overlayers (see Section 3.5), the enhancement of the conduction and
electron emission currents and formation of N-shaped conduction current}voltage curves were
accompanied by substantial changes in the characteristics of light emission (Fig. 4.5, curve I

L
in the

inset). There is a considerable di!erence between the light spectra corresponding to the rising and
falling (VCNR) segments of the conduction current}voltage curves. In the former case the spectrum
is nearly structureless, but shows a steep intensity growth in the red and infrared region
(j'600nm). In the latter case there are two broad maxima at j+510 and 610 nm, and the
intensity strongly increases at j'700 nm [156]. Both the spectra are distinct from the spectrum
for clean gold island "lms (Fig. 4.3) which shows a number of pronounced maxima in the visible
region. As noted in Section 3.5, there are arguments suggesting that organic molecules evaporated
in vacuum onto IMFs can self-assemble into thin quasi-polymeric bridges spanning the gaps
between the islands. Fig. 4.6 displays a close correlation between variations in the conduction
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current and light intensity (j"615nm). These results recorded in the alternating voltage regime
show that the hysteresis loop for the light intensity mirrors rather closely the modulus of the
derivative of the conduction current loop. Such a behaviour is quite typical for electroluminescence
of semiconductors (see e.g. Refs. [157}159]). Thus we suppose that what is observed in our case
may be the electroluminescence of organic bridges which are excited by hot electrons injected into
them from adjacent metal islands.

The results presented in this section demonstrate the close correlation between the intensities of
the electron and light emission from IMFs and thus evidence that a uni"ed explanation should
exist for both phenomena. Taking into account the nonequilibrium heating of the electron gas it is
possible to explain the major origins of the electron and light emission from the island "lms.

5. Hot electrons in metal nanoparticles

5.1. Introductory remarks

Sections 5}7 are devoted to theoretical treatment of electronic kinetics and optical absorption in
small metal particles and their ensembles. The peculiarities of these characteristics are caused both
by the speci"c properties of individual particles and by interaction between the particles. The
condition of the onset of a size e!ect is the comparability of the particle size to a physical value with
the dimension of length (the de Broglie wavelength, the electron mean free path, the depth of the
skin layer, the length of an electromagnetic wave, etc.). In what follows, we will show in detail that
in the case when the particle size becomes smaller than the electron mean free path, the intensity of
the electron}lattice energy exchange is strongly suppressed in comparison with its bulk value.
Furthermore, in this situation the absorption of light by free electrons is determined by their
scattering at the surface rather than in the volume. The optical properties of small particles as well
as of their ensembles are also di!erent depending on whether the particle size is smaller or larger
than the length of the electromagnetic wave and the depth of the skin layer.

In the island metal "lms, additional features appear due to interaction between the metal
particles. In the "rst place, the system of metal particles on a dielectric substrate can be coupled by
electron tunneling and therefore can be conducting. However, the temperature and "eld depend-
ence of the conductivity is di!erent from that in continuous metal "lms and in bulk metals.
Secondly, the dipoles which are induced in the particles by external alternating electromagnetic
"elds interact with each other giving rise to local "elds. The local "elds determine a diversity of
phenomena in IMFs such as optical absorption and re#ection, second harmonic generation,
opto-acoustical e!ect etc. Thus there is a very broad scope of e!ects in which peculiar properties of
small metal particles and their ensembles can come into play.

We will concentrate on the phenomena which occur in the process of feeding power into the
electronic subsystem of IMFs. The power can be pumped by passing a current through the "lm and
by laser or electron irradiation. In any case we are dealing with nonequilibrium electron}phonon
systems. The most spectacular and unexpected peculiarity of IMFs is the possibility of generation
of hot electrons in them under stationary (or quasistationary) conditions: the electron tempera-
ture can exceed by one to two orders of magnitude the lattice temperature of the islands which are
sitting on a substrate with a good thermal conductivity. This e!ect appears unexpected, since the
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hot electrons in continuous metal "lms and in bulk metals can be obtained just for very short times,
when e.g. these objects are exposed to ultrashort laser pulses or to ultrashort electron pulses
generated in explosion emission. Under such conditions, electrons are heated up during the time of
&10~12 s. The lattice receives energy from the electron gas in &10~10 s, and the metal can be
melted and evaporated after that if the pulse is powerful enough. By contrast, the hot electrons in
IMFs can be generated under stationary conditions and without destruction of the "lm. In this
section we will try to explain why this is possible.

The generation of hot electrons in IMFs allows one to understand the whole body of phenomena
which occur when the "lms are excited by the conduction current as well as laser or electron
irradiation. In particular, the model of hot electrons seems now to be the only model which
accounts for the features of electron and photon emission from IMFs exposed to IR laser beams. It
should be recalled that the electron emission is induced by photons whose energy is lower by
a factor of 30}40 than the work function. This occurs at such laser beam intensities that the
many-photon processes are unessential and the "lm remains stable for 103}104h. No emission is
observed under such irradiation intensities in bulk metals and continuous metal "lms.

As will be shown below, the heating of electrons in IMFs depends on the power pumped into the
islands, on the special features of electron}lattice energy exchange in small particles and, "nally, on
the conditions of the heat transfer from the particles to the substrate. A strict analytical treatment
of these factors will be given in Sections 6 and 7. In this section, we will begin with a graphic model
which explains why the conditions in the small particles are favourable for nonequilibrium electron
heating and then will discuss in more detail the consequences of the heating of the electron
subsystem.

5.2. Heating up of electrons

Suppose power is fed into the electron subsystem of an IMF. This can be achieved by passing
a current through the islands, which are coupled by transparent potential barriers, as well as by
irradiation of the "lm by a laser or electron beam. Owing to existence of the electron}phonon
interaction, the power absorbed by the electron subsystem is transferred to the phonon system
of the islands and then is carried o! to the substrate. It is evident from general considerations that
the electron temperature should be higher than the lattice temperature. The point is how large
this temperature di!erence can be and whether or not the IMF will be destroyed (melted and
evaporated) through the power injection. Let us proceed from the system of equations that
determine the electron (¹

%
) and phonon (¹) temperature in a metal island:

R
Rt(C%

¹
%
)"div(K

%
$¹

%
)!a(¹

%
!¹)#Q , (13)

R
Rt(C¹)"div(K$¹)#a(¹

%
!¹) . (14)

Here C
%

and C are electron and phonon speci"c heats, K
%

and K are electron and phonon heat
conductivities, and Q is the speci"c power absorbed in the island. The coe$cient a characterizes the
intensity of electron}phonon interaction and correspondingly the product a(¹

%
!¹) determines

the power transferred from electrons to phonons. To avoid misunderstanding, it should be stressed
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that the power is proportional to (¹
%
!¹) only in the case when this di!erence is not too large. In

principle, the values Q, ¹
%

and ¹ can di!er in di!erent islands. The system of equations (13) and
(14) is to be complemented by a boundary condition which describes the process of heat transfer
from the metal island to the substrate.

But before discussing the speci"c behaviour of electrons in IMFs, it is appropriate to recall
some basic data about the heating up of electrons in bulk metals [160]. Since the speci"c heat of the
electron subsystem (C

%
) is much smaller than that of phonons (C), the characteristic relaxation time

for the electron temperature q
%
&C

%
/a is much shorter than the corresponding time for phonons.

To an order of magnitude, one usually has q
%
&10~12 s and q

1)
&10~10 s. For this reason

the phonon temperature cannot change substantially in a time t(q
%
, and during such a time the

electrons behave as if they were thermally isolated. The result is that, in feeding power into the
metal, the electron temperature grows very steeply until the energy #ux from electrons to phonons
becomes equal to the absorbed power, i.e.

a(¹
%
!¹)+Q . (15)

During a time of t&q
1)

the phonon temperature in the bulk metal lines up with the electron
temperature. This is the reason why, in bulk metals, the hot electrons can be observed only for
times t(q

1)
, e.g. by using short, but powerful laser pulses for irradiation [161]. The "rst basic

di!erence between a bulk metal and small metal particles placed on a well heat-conducting
substrate is that the lattice of the particles remains cold even when the electrons in them are
strongly heated. The electron and phonon temperatures are not lined up even under steady-state
conditions. Of course, the metal islands can be thermally destroyed, but only at power #uxes that
are orders of magnitude higher than those sustained by bulk metals.

Let us dwell on this point in more detail. We shall consider the times t'q
1)

when the electron
gas has already been heated up and condition (15) is obeyed. This means that all the power received
by the electrons is being transferred to the lattice, so the variation of the electron temperature with
time is connected only with the heating of the lattice. Then Eq. (14) with consideration of condition
(15) transforms to

R
Rt(C¹)"div(K$¹)#Q . (16)

Instead of solving this equation with a boundary condition corresponding to an island on the
substrate surface, we shall further simplify the problem and consider a small metal sphere
inside a dielectric. Furthermore, let us assume for a while that C and K are the same for the metal
sphere and its dielectric surroundings. The value Q is non-zero only inside the sphere. Such a model
was exploited earlier in a study of the optical durability of laser glasses [162]. The solution of (16)
under such conditions reads

¹(r, t)"
i

p3@2KP
t

0

dt@Pdr
Q(r@, t@)

[4i(t!t@)]3@2
expG!

(r!r@)2
4i(t!t@)H . (17)

Here and below the phonon temperature is reckoned from its equilibrium value (at Q"0),< is the
volume of the metal sphere and i"K/C. It is assumed that a power #ux Q constant in the whole
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volume of the sphere is turned on at a moment t"0, i.e.

Q(r, t)"G
Q

0
"const, r(a, t50 ,

0, r'a ,
(18)

where a is the radius of the sphere. Under such an assumption the integration of (17) can be readily
performed to give the result

¹(r, t)"G
Q

0
4KG

4a3

3r
#g2C;0A

r#a
g B!;0A

r!a
g BDH , r'a ,

Q
0

4KG2a2!
2
3
r2#g2C;0A

r#a
g B!;0A

r!a
g BDH , r(a .

(19)

The following notations are used here:

;
0
(x)"Gx!

2
3Ax2!

1
2B

g
rH

e~x
2

Jp
#Gx2#

1
2
!

2
3
x2

g
rHU(x) , (20)

g"J4it and U(x) is the probability integral. It can be seen that for g<a solution (19) gives
a steady-state phonon temperature

¹(r, t)+
Q

0
4KG

4
3

a3

r
, r'a ,

2a2!2
3
r2, r(a .

(21)

The steady-state regime is reached in a time t'a2/4i. This stationary solution can be obtained
directly from Eq. (16) without using a rather cumbersome equation (19). In particular, by solution
of Eq. (16) inside and outside the sphere and by joining the temperatures and heat #uxes at the
boundary (r"a), one can easily "nd the temperature distribution in the situation when the
parameter K is di!erent for the sphere and its surroundings. For example, in the case when

K"G
K

1
, r(a ,

K
2
, r'a ,

(22)

one obtains instead of solution (21) the following expression for the temperature inside the sphere:

¹(r)"
Q

0
3 G

a2!r2
2K

1

#

a2

K
2
H, r(a . (23)

By the way, this formula shows that, if the thermal conductivity of the sphere is substantially higher
than that of the matrix, the temperature within the sphere is nearly constant. Such a situation is
always valid for the metal particles whose size is smaller than the mean free path of electrons in the
bulk metal. In this case the temperature everywhere within the sphere is constant and equal to

¹K

Q
0

3
a2

K
2

. (24)
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It is seen that the smaller the particle and the higher the thermal conductivity of the matrix, the
lower is the temperature of the particle and hence the higher is its endurance against the injection of
power. Expression (24) has been obtained under the condition that the sphere absorbs a power
Q

0
<"4

3
pa3Q

0
which is conveyed to the matrix through the sphere surface with the area S"4pa2.

For a small metal particle of an arbitrary shape which has a volume < and a contact area with
a substrate S

#
, one easily arrives at an approximate formula

¹+

Q
0
<

4S
#
K

2

R . (25)

Here R is a characteristic dimension of the particle.
It should be noted that the thermal endurance of small metal particles on a heat-conducting

substrate can be substantially higher when the power Q is fed in a pulsed regime. Suppose the pulse
duration is q. During this time the heat from the particle spreads within the substrate over
a distance lq&J4Kq/C. For typical heat-conducting insulators and q&10~6 s, one will have
lq&10~5}10~4 cm. Thus, if a metal particle is about 10~6 cm in size, the energy Q

0
<q absorbed in

it during the time of the pulse disperses over a space in the substrate whose volume exceeds the
particle volume by many orders of magnitude. This circumstance can substantially enhance the
thermal endurance of small metal particles.

Up to this point we discussed only one of the peculiarities of IMFs as compared with bulk
metals. To clarify their other speci"c features, it is necessary to come back to Eqs. (13) and (14). We
have seen that the expression for the lattice temperature has a rather intricate shape (19) even under
the most simpli"ed assumptions. However, the essence of the problem can be appreciated using
a simple graphic model, without cumbersome calculations.

5.3. A model of heating of the electron gas in IMFs

Consider a narrow vessel that is inserted into a wide vessel (Fig. 5.1). Their cross-sections are
proportional to the speci"c heat of electrons (C

%
) and phonons (C), respectively. Recall that

C
%
;C. A liquid is poured into the narrow vessel, its #ux being equal to Q. Both the vessels have

longitudinal slits in them. The slit in the narrow vessel has a width proportional to a and mimics
the intensity of the heat transfer from electrons to phonons. Analogously, the slit in the wide vessel
simulates the intensity of heat exchange between the island lattice and the substrate. The height of
the liquid column in the narrow vessel corresponds to ¹

%
and that in the wide vessel to ¹. Such

a model simulates all the essential features of the solution of equation system (13) and (14) with
appropriate boundary conditions. It should be noted also that the gradient terms div(K

%
$¹) and

div(K$¹) can be neglected for a small particle whose dimension is smaller than the electron mean
free path, because in this case the temperatures ¹

%
and ¹ inside the particle do not depend on

coordinates. Thus, if the #ux of the liquid Q is switched on in a moment t"0, one will observe the
transition to a quasi-steady state after a rather short time q

%
&C

%
/a. In this state all the #ux poured

into the narrow vessel #ows out through the slit in it into the wide vessel. It means that the balance
condition (15) is satis"ed. The stabilization of the liquid level in the wide vessel is attained due to
out#ow of the liquid through the rather wide slit which mimics the good heat contact between the
island and the substrate. The height of this level corresponds to the lattice temperature, which
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Fig. 5.1. A model of communicating vessels illustrating the electron}lattice energy transfer and nonequilibrium heating
of the electron gas in a small particle on a substrate. See text for explanations.

obviously must be low enough to avoid the melting and evaporation of the island. As can be seen
from this model and Eq. (15), the gap between the temperatures of electrons and phonons is wider
the larger is the energy #ux Q and the smaller is the electron}phonon coupling coe$cient a:

(¹
%
!¹)+Q/a .

The high-energy-transmitting endurance of IMFs has already been discussed in Section 5.2. Let
us now point out further two unique features of these "lms.

(a) The intensity of the electron}lattice energy exchange, denoted above as a, can be by a few
orders of magnitude lower in a small metal island than in the bulk metal.

(b) Much higher energy #uxes can be injected into small metal islands without their destruction
than into bulk metals.

These peculiarities will be considered at length in Sections 6 and 7. Here we shall give only some
introductory explanations. Concerning point (a), it should be noted that the main energy losses of
hot electrons in bulk metals are due to generation of acoustic phonons by Cherenkov's mechanism
[163,164]. In a small metal particle whose dimensions are smaller than the mean free path of
electrons in the volume, the character of electron scattering drastically changes. Electrons now
execute mainly a quasi-periodic motion from one wall of the particle to another, and the
Cherenkov mechanism of energy dissipation becomes ine$cient under such conditions. The
electron energy losses are caused in this case by the surface scattering and the coe$cient a can
be lower by orders of magnitude than in the bulk (see Section 6). As to point (b), the injection of
high-energy #uxes into small metal islands can be implemented, e.g. through laser irradiation or
through conduction current excitation. In the former case, large Q values are attained owing to

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 113



peculiarities of light absorption by small metal particles in the range of infra-red CO
2

laser
generation. The underlying physics is detailed in Section 7. In the conduction current excitation,
the high-energy #uxes are provided by formation of the conduction channels with a high current
density (see Section 3). The islands with hot electrons arise just within these channels. We have
dealt with this issue in Section 2.4.

To summarize, we list again the main physical factors that can ensure the appearance of hot
electrons in IMFs in stationary or quasi-stationary conditions. These are the high thermal
endurance of small metal particles on the heat-conducting substrate, the suppression of the
electron}lattice energy exchange in such particles, and the possibility of pumping high energy
#uxes into them.

5.4. Phenomena caused by hot electrons in IMFs

Here we shall discuss some important phenomena attributed to the generation of hot electrons in
IMFs:
(a) deviations from Ohm's law, i.e. the occurrence of non-linear conduction current}voltage

characteristics;
(b) electron emission from IMFs;
(c) photon emission from IMFs.
The explanation of e!ect (a) is fairly evident. As noted above, the conduction current through an
IMF is e!ected by electrons tunneling from one island to another. The tunneling occurs mainly at
energies close to the Fermi level. At low electric "elds, the tunneling current between two adjacent
islands is proportional to the o!set of their Fermi levels, so Ohm's law is obeyed. At higher "elds,
the heating of electrons sets in and a group of electrons is generated with energies above the Fermi
level. The contribution of the hot electrons depends on the electron temperature, which in its turn
depends on the applied "eld. This results in a nonlinear current}voltage characteristics. Their
shape was speci"ed in more detail in Section 3.2 where the experimental "ndings were discussed.

As considered above, the electron emission from IMFs can be induced by the conduction current
as well as by laser irradiation of the "lms. In both the cases the hot electrons are generated.
A theoretical estimation given in Section 3 and experimental measurements show that the electron
temperature in small metal islands can amount to &103K while the lattice remains virtually cold.
Therefore, what is observed is interpreted as a Richardson emission of the hot (nonequilibrium)
electrons with the current

I
%
Je~r@kBT% . (26)

Here u is the work function of the island and k
B

is the Boltzmann constant. As indicated in
Section 3.3, under current excitation of the "lms the electron emission arises when the conduction
current}voltage characteristics start to deviate from the linearity. This seems to be evident, since
both the e!ects have the same origin: generation of hot electrons.

In the case of laser excitation, the emission current represents a kind of photoresponse of the "lm
to the IR irradiation. However, there is no way to interpret this phenomenon as a one-photon or
many-photon photoemission. The one-photon photoe!ect is impossible because a CO

2
infra-red

laser generates quanta whose energy (&0.12 eV) is lower by a factor of 30}40 than the work
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function of the islands. On the other hand, the intensity of the laser beams used in the experiments
was far too low to bring about a many-photon electron emission. Contrary to these mechanisms,
we ascribe the e!ect to the absorption of the laser beam power by the whole ensemble of electrons
of the island. The electrons are heated up in a time q

%
&10~12 s, so again the Richardson emission

of the hot electrons becomes possible.
The inference about the central role of the hot electrons in the peculiar properties of IMFs

appears all the more credible when one considers the whole body of experimental data on the
nonlinear conduction current}voltage characteristics, and the electron and light emission. Let us
now address the mechanisms of the light emission.

5.5. Mechanisms of light emission from IMFs

Recall that the photons are emitted from the spots about 1 lm in size. The spots are visible to the
naked eye which means that at least some of the emitted quanta have energies which are about 20
times as high as the energy of exciting quanta in the case of the infra-red laser irradiation. The
possibility of generation of hot electrons in IMFs, the existence of numerous tunnel junctions in the
"lms, the rough surface geometry and, in some cases, the presence of microscopic connecting
bridges between the islands, all can be responsible for occurrence of a variety of light radiation
mechnisms in IMFs. A list of possible one-electron and many-electron radiation mechanisms in
IMFs can include bremsstrahlung of the hot electrons; radiation generated in the inelastic
tunneling of electrons from one island to another; inverse photoe!ect; transitions between discrete
energy levels in the connecting bridges; radiative decay of collective electron excitations. For small
particles, the plasma frequency is substantially dependent on the shape and relative position of the
particles, the existence of bridges between them and other factors [165,166]. This diversity of
mechanisms is the reason why the spectrum of the light radiation from IMFs can extend from
infra-red frequencies to the frequencies of volume plasmons. The necessity to satisfy simultaneously
the conservation laws for energy and momentum makes impossible both radiation and absorption
of photons by free-moving electrons. However, such a possibility arises when an electron interacts
with phonons or a surface. If the island dimension is larger than the mean free path of electrons,
they are scattered mainly on phonons. In the opposite case the surface scattering is dominant. The
scattering can be both elastic and inelastic, but photons can be radiated or absorbed in the latter
case only. If the electron subsystem is nonequilibrium (i.e. hot electrons are present), the generation
of photons prevails. Below we shall consider the radiative transitions in inelastic surface scattering
and inelastic electron tunneling between adjacent islands [167].

The time-dependent Schroedinger equation for an electron moving inside the particle in the "eld
of an electromagnetic wave reads

i+
Rt
Rt "G

1
2mAp(!

e
c

AB
2
#;(x)Ht . (27)

Here A is the vector potential of the electromagnetic "eld inside the particle. In the case when one
calculates the energy absorbed by the particle, this "eld should be determined from the external
electromagnetic "eld. This point will be addressed in Section 7. Here we shall focus mainly on the
radiation mechanisms.
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A model surface potential barrier with a "nite width will be considered later, but "rst we suppose
that a one-dimensional barrier has a step-like shape

;(x)"G
0, x40 ,

;, x'0 .
(28)

The time dependence of A(t) is assumed to be

A(t)"A(0)Me*ut#e~*utN , (29)

where u is the frequency and A(0) a constant vector amplitude. Considering A as a weak
perturbation, Eq. (27) can be linearized against A and its solution can be represented as follows:

t(r, t)"t(0)(r)e~(*e@+)t#i
2e
+

+
`,~

A(0)U(B)(r)e~(*@+)(eB+u)t . (30)

Here e is the electron energy, t(0)(r, t) is the solution of Eq. (27) at A"0 and U(B) is a vector
function to be determined. The equations necessary for "nding U(B)

x
(r), U(B)

y
(r), U(B)

z
(r) can be

obtained by substitution of solution (30) into a linearized equation (27) and by equating the
coe$cients standing at identical components of the vector A. In particular, for the function U(B)

x
(r)

one obtains

GD#

2m
+2

(e$+u!;(x))HU(B)
x

(r)"
R
Rxt(0)(r) . (31)

Assuming that A(0) in (29) is a constant vector we have neglected the spatial dispersion. In this
approximation the terms in (30) proportional to U(B)

y
(r) and U(B)

z
(r) do not contribute to the

inelastic current. For this reason we shall not write down equations for them. The problem of the
coordinate dependence of local "elds within small metal particles will be analyzed in more detail
in Section 7.

It is clear from Eq. (30) that the sign `#a in the function U(B)
x

(r) corresponds to absorption and
the sign `!a to the radiation induced by an external "eld. We are interested in a spontaneous
rather than induced radiation. Let us show how the probability of the spontaneous radiation can
be found from the probability of induced radiation. To this end we shall write down the function
t(0)(r) in its explicit form:

t(0)(r)"t(0)(x)e*(kyy`kzz) . (32)

Here k
i
are the components of the wave vector and the function t(0)(x) for the step-like barrier (28)

has a standard form

t(0)(x)"e*kxx#R
0
e~*kxx at x40 , (33)

t(0)(x)"G
Fe*i0x, e

x
5;, x'0 ,

F@e~i0x, e
x
4;, x'0 .

(34)

In (34), e
x

is the component of energy corresponding to the motion of an electron normal to the
barrier:

e
x
"(1/2m)(+k

x
)2 . (35)
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We also use the notation

i
0
"M(2m/+2)D;!e

x
DN1@2 . (36)

The unknown coe$cients R
0
, F and F@ are determined from the smooth joining of functions (33)

and (34) at x"0. It can be readily proved that the solution of Eq. (31) can be represented as

U(B)
x

(r)"$

+
2mu

R
Rxt(0)(r)#u(B)(x)e*(kyy`kzz) , (37)

where the function u(B)(x) has the following form:

u(B)(x)"G
de~*qx, x40,

ge*cx, x50, e
x
$+u5; ,

g@e~cx, x50, e
x
$+u4; .

(38)

In (38) we have used the notations

q"S
2m
+2

(e
x
$+u) , (39)

c"S
2m
+2

De
x
$+u!; D . (40)

Since we are considering the radiation, it is natural to assume that e
x
'+u. The unknown

coe$cients d, g, g@ in Eq. (38) can be determined from the continuity condition for the function
U(B)

x
(r) and its derivative at x"0 [122]. In doing so we can "nd an explicit expression for the

function U(B)
x

(r) and hence calculate the required probabilities of the inelastic transitions. Indeed,
taking into account (37) and (38) and substituting function (30) into the expression for the current
density

I
x
"

e+
i2mGtH

Rt
Rx!t

RtH
Rx H , (41)

one can calculate the elastic and inelastic (i.e. connected with u(B)(x)) component of the current
density. Relating then the inelastic component to the incident #ux (I(0)

x
"+k

x
/m), we obtain the

probability of the inelastic transitions

D(B)(e
x
, u)"

I(n)
x

I(0)
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2e
c+
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x B

2 q
k
x

DdD2 . (42)

After the determination of d and its substitution into (42), we arrive at the result
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(43)
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The function C(e
x
) has here the form

C(e
x
)"

;

(Je
x
#Je

x
!;)2

. (44)

In (43), the case e
x
4;, e

x
$+u4; describes the usual bremsstrahlung for the `#a sign and

the inverse e!ect for the `!a sign. The case e
x
4;, e

x
#+u'; corresponds to the surface

photoe!ect and the case e
x
5;, e

x
!+u(; to the inverse surface photoe!ect. Finally, the

situation e
x
5;, e

x
$+u5; represents a usual inelastic scattering at the potential barrier.

Before addressing the problem of the spectral density of the radiation, let us brie#y turn to the
inelastic tunneling between the islands. Instead of Eq. (16), one has in this case

;(x)"G
0, x40 ,

;, 04x(a
0

,

0, x'a
0

.

(45)

The solution procedure remains the same with the di!erence that, instead of Eqs. (33) and (34), one
uses the functions corresponding to potential (45) and the functions u(B)(x) from (38) must be
replaced by

u(B)(x)"G
de~*qx, x40 ,

f
1
ecx#f

2
e~cx, 04x4a

0
,

ge*qx, x5a
0

.

(46)

The details of the calculations can be found in Appendix A.
In addition, the procedure of joining the functions and their derivatives should be carried out not

only at x"0, but also at x"a
0
. In this case the probability of the inelastic scattering with

absorption (the sign `#a) and radiation (the sign `!a) of photons is given by

D(B)( e
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Here
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and shx, chx are respectively hyperbolic sine and cosine. We also have introduced the notation

G(i
0
k
x
)"(i2

0
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)2sh2i

0
a
0
#4i2

0
k2
x
ch2i

0
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0

. (49)

The above method of calculation, within a uni"ed approach, of all processes connected with the
inelastic electron re#ection from the barrier and the inelastic tunneling was "rst used to this end
in [122].
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The radiative transitions considered up to this point correspond to transitions induced by the
external "eld. To obtain the probabilities of spontaneous transitions which we need, we are using
the following arti"cial expedient [168]. Let us choose such a normalization of the vector potential
of the electromagnetic "eld that the "eld quantization volume <

0
will contain in the average

N
1)

photons characterized by the energy +u and a given wave vector and polarization. Under such
conditions one obtains

A(0)"cA
2p+
<
0

N
1)

u B
1@2

. (50)

To calculate the probability of spontaneous transitions, it is necessary to substitute (50) into (42)
(or (43)) and (47) and then to set N

1)
"1. In this way we shall obtain the probabilities of

spontaneous transitions into the "eld state with a given polarization, frequency u and wave vector
q
1)

. To "nd the full probability of radiation in a unit frequency interval and a solid angle dX,
the probabilities obtained above should be multiplied by the density of the "nal state of the "eld
equal to

do(u)"
<

0
q2
1)

dq
1)

(2p+)3du
dX"

<
0

(2pc)3
u2dX . (51)

The total probability of spontaneous radiation in inelastic electron re#ection from the barrier or
the inelastic tunneling is given by

=
%
"[D(~)(e

x
,u)]

N1)/1
) do(u) . (52)

The spectral density of radiation of all electrons into a solid angle dX from the surface area S equals

dE(u,X)"
2+uS
(2p+)3P

=

exz+u
dp

x
v
x
=

%
(e
x
, u)P

=

~=
P

=

~=

dp
y
dp

z
f (e)[1!f (e!+u)]

"

2mh
%

(2p+)2
Su[exp(+u/h

%
)!1]~1 ) P

=

exz+u
de

x
=(e

x
,u)Z(e

x
u) . (53)

In this expression, f (e) is the Fermi function with an e!ective electron temperature h
%
"k

B
¹

%
and Z(e

x
, u) is

Z(e
x
,u)"ln

1#exp((k#+u!e
x
)/h

%
)

1#exp((k!e
x
)/h

%
)

, (54)

where k is the Fermi energy. Having the explicit expressions for the probability of inelastic electron
re#ection from the barrier (43) and of the inelastic tunneling (47), it is easy to calculate, using
formula (53), the spectral density of radiation in any speci"c case of barrier parameters, frequency
range etc. Unfortunately, a simple analytical expression for the general case does not exist. It can be
obtained only in various limiting cases. For instance, in the frequency interval

h
%
(+u(u,k , (55)

the total spectral density of radiation in all directions is

E(u)"S
2e2

3(2c+)3
+ue~+u@h%Gk(k#+u)!

2
3
(+u)2H . (56)
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In the case speci"ed by condition (55) the main contribution to the radiation stems from
bremsstrahlung of hot electrons occurring in their collision with the surface barrier.

It is instructive to compare the above quantum mechanical treatment of the bremsstrahlung with
its classical description. The total (to all directions) power of bremsstrahlung from a charge moving
with an acceleration v5 is known to be

dE
dt

"

2
3

e2
c3

v5 2 . (57)

Hence the total energy radiated during the time of the acceleration is

E"P
=

~=

dE
dt

dt"
2
3p

e2
c3P

=

0

du CP
=

~=

v5 e~*utdtD
2

. (58)

Since the change of the velocity of an electron in its collision with a step-like barrier occurs
jumpwise, the value ut in the exponent of formula (58) can be neglected, which gives a simple
expression for the spectral density of radiation:

E(u)"
2
3p

e2
c3

D*vD2 . (59)

Here *v is the change in the velocity of an electron in its re#ection from the barrier (*v"2v
x
). Thus

we arrive at the result

E(u)"
8
3p

e2
c3

v2
x
"

16
3p

e2
mc3

e
x

. (60)

In the quantum mechanical treatment, expressions (52), (43) and (50) give for the contribution of an
electron to the spectral density of the bremsstrahlung

+u=
%
"(cos h@)2

2e2
p2c3

Je
x
(e
x
!+u) dX
m

. (61)

Here h@ is the angle between the vector of the electric "eld in the radiated wave and the normal to
the surface. The integration of (61) over all angles under the condition e

x
<+u gives the expression

that is exactly coincident with (60).
In closing this section let us address brie#y the radiation generated in the inelastic tunneling. In

the case

i
0
a
0
'1 , (62)

relations (47) and (52) predict that the probability of the tunneling accompanied by the radiation of
a quantum +u equals

=
%
"

4e2+
p2m2c3;

Je
x
(e
x
!+u)i2

0
e~2a0i0cos2 h@ dX . (63)
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Hence, the spectral density of this radiation into a solid angle dX is

dE(u,X)+S
2e2h

%
u

p4m+c3;
cos2 h@dXP

U

+u
de

x
Je

x
(e
x
!+u)e(k~ex )@h% )i2

0
e~2a0i0 . (64)

It should be kept in mind that the integrand in (64) is not quite accurate at both the lower and the
upper limit of integration. The inaccuracy at the lower limit is due to the necessity of taking into
account Pauli's exclusion principle for the states with e

x
(k. The inaccuracy at the upper limit is

caused by the fact that condition (62) is not obeyed at e
x
P;. However, these inaccuracies are

partially compensated by other physical factors and for this reason cannot signi"cantly in#uence
the value of integral (64). Indeed, the inaccuracy of the approximation at the lower integration limit
is partially counterbalanced by the very low tunneling probability (because of the inequality
a
0
i
0
<1). At the upper limit, there are very few electrons with high energies (for which one has

a
0
i
0
(1). Therefore, no substantial error will be made if one assumes +u(k at (e

x
)
.*/

+k and
determines (e

x
)
.!9

from the condition (e
x
)
.!9

+;!+2/2ma2
0
. This procedure gives

P
U

+u
de

x
Je

x
(e
x
!+u)e(k~ex )@h% )i2

0
e~2a0i0

+P
U~+2@2ma

2
0

k
de

x
Je

x
(e
x
!+u)e(k~ex )@h% ) i2

0
e~2a0i

0
. (65)

Using the theorem of the mean we can take outside the integral sign the value of the function

Je
x
!+u at a point e

x
"e

0
. The remaining integral does not depend on the frequency. As follows

from (64) and (65), the spectral density of the radiation generated in the inelastic tunneling can
decrease very slowly with growing frequency. This may explain why many photons emitted from
IMFs have energies which exceed the energy of excitation photons (in the case of IR laser
irradiation) by a factor of ten and more. The radiation mechanisms connected with the decay of
plasmon excitations in IMFs were discussed in Section 4.

5.6. Summary of Section 5

In this section, we formulated and discussed on a qualitative level three factors which ensure the
generation of hot electrons in IMFs: the strong attenuation of the electron}lattice energy exchange
in small metal particles; the high power density throughput of the small particles sitting on
a substrate with a good thermal conductivity; the favorable conditions which exist for pumping
high power densities into small metal particles. We have also presented a simple model which
illustrates, using a hydrodynamic analogy, the interplay of these factors in the nonequilibrium
heating of electrons in IMFs.

Then we substantiated in detail one of the three factors listed above, namely, the high throughput
capacity of the small metal particles which enables them to pass high energy #uxes without
destruction. We also considered the consequences of the nonequilibrium heating of electrons: the
electron and photon emission from IMFs. In what follows we shall treat at length theoretically the
remaining two factors: the electron}lattice energy exchange in small metal particles (Section 6) and
the possibility of feeding high power densities into them using IR laser irradiation (Section 7).
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6. Electron}lattice energy exchange in small metal particles

6.1. Introductory remarks

As noted in Sections 3 and 5, one of the reasons for the generation of hot electrons in IMFs is the
sharp attenuation of the electron}lattice energy exchange in particles with dimensions smaller than
the electron mean free path. Contrary to the situation in bulk metals where the motion of electrons
is mostly rectilinear and is only occasionally interrupted by scattering acts, their motion in small
particles is oscillation-like, because electrons `#ya ballistically from one wall to another changing
very frequently the direction of the motion. We will show below that this change in the character of
the motion can strongly suppress the intensity of the electron}lattice energy exchange. It should be
recalled that the lower this value, the larger will be the di!erence between the electron and lattice
temperatures at a given power absorbed by the electron subsystem.

Atomic vibrations in a small metal particle and interaction of electrons with them can be treated
either classically or quantum-mechanically, the choice being the matter of convenience. In Section
6.2, we shall apply the former approach to describe the generation of acoustic phonons by a moving
electron. The corresponding classical equation is derived from "rst principles in Section 6.6. The
main losses of energy of hot electrons in a bulk metal are due to Cherenkov generation of acoustic
waves by electrons whose velocity is much larger than the sound speed. This mechanism is highly
e$cient, but it vanishes in small particles where the motion of electrons becomes oscillation-like
[126,169]. In the latter case, the energy losses are determined mainly by mechanisms of surface
scattering of electrons. These processes can be treated more conveniently in the quantum-kinetical
approach. The corresponding results are presented in Sections 6.3, 6.4 and 6.6.

6.2. Peculiarities of the electron}lattice energy transfer in island metal xlms

As noted above, the power gained from the "eld, static under the current heating or high-
frequency under the laser irradiation, is transferred by electrons to lattice vibrations (phonons) and
then drained to the substrate via heat conduction. In the framework of the classical approach
[163,164] the electron energy losses are treated as the Cherenkov generation of acoustic waves by
the moving electrons whose energies exceed the Fermi energy. Both classical and quantum kinetic
approaches were shown [164] to yield the same expression for the electron energy losses. The
classical approach suits us better because it o!ers a simpler description of the peculiarities of
electron motion in metal islands with characteristic dimensions smaller than the mean free path.

The Cherenkov generation of acoustic waves is known to be the dominant mechanism of
hot-electron energy losses in the bulk of metals. In what follows emphasis is given to the proof of
the assertion that this dissipation mechanism may vanish in the metal island whose dimensions are
smaller than some critical value.

The longitudinal acoustic vibrations generated by the moving electron (i.e. the longitudinal
vibrations that are responsible for the losses under consideration) are known to be described by the
equation [164]

(R2u/Rt2)!s2*u"!(K/o)+d(r!r(t)) . (66)
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Here u is the longitudinal component of the displacement vector, s is the sound velocity in the
metal, o is the density, K is the electron}lattice interaction constant, r(t) is classical electron path
(trajectory), and r and t are the coordinate and time. In an in"nite medium r(t)"*t, where * is the
electron velocity.

The Fourier expansion of the force proportional to +d(r!*t) in Eq. (66) shows that there are
harmonics for all frequencies and, consequently, there exist relevant conditions for the resonant
excitation of all lattice vibrations. A distinguishing feature of metal particles smaller than the
electron mean free path, which is governed by the scattering by lattice vibrations, is that there occur
harmonic oscillations with frequencies of the order of v/¸, where ¸ is the characteristic size of the
metal particle. In this case, the driving force does not contain all harmonics and, as soon as electron
oscillation frequency exceeds the limiting Debye frequency, resonant interaction between a moving
electron and lattice vibrations becomes impossible and hence, the Cherenkov losses vanish.

A brief mathematical substantiation of the above arguments may be to the point. To take into
account the peculiarities of a "nite system, it is su$cient, as will be shown later, to study the
periodical electron motion only in one direction, i.e., to assume that

r(t)"Mr
M
"const, z"/(t)N , (67)

where /(t) is a periodic function of time. The Fourier expansion of Eq. (66) is given by

u,+s"+
=
+

kl/~=
Pdk

M
s8 (k

M
, k

l
)e*(kM > r

M`klz) . (68)

Substitution of (68) in (66) yields the following equation for s8 :

R2s8
Rt2#u2(k)s8 "!

1
8p2

K
o¸

e~*kl((t) , (69)

where u2(k)"s2(k2
M
#k2

l
).

The electron energy losses due to the generation of lattice vibrations are given by [164]

de
dt

"KP
Ru
Rt +d(r!r(t))d3r"K+

(kl )
Pdk

M
(k2

M
#k2

l
)
Rs8
Rt e~*kl((t) , (70)

R
Rtuz K

z/BL

"0 . (71)

Here 2¸ is the size of the system along the z-axis. The solution of Eq. (69) can be written as

s8 "!

K
8p2o¸u(k)P

t

0

dt@ e~*kl((t{) sin[u(k)(t!t@)] . (72)

Substituting this solution into (70), we get

de
dt

"!

K2

8p2o@¸Pdk
M
(k2

M
#k2

l
)P

t

0

dt@ cos [u(k)(t!t@)]e*kl *((t)~((t{)+ . (73)
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Assuming now that the electron oscillating motion is described by /(t) and taking it in the
simplest form

/(t)"¸ sinA
v
¸

tB , (74)

we can easily estimate, within the context of (73), how the "nite size of the system in#uences the
electron}lattice energy exchange.

First of all, we shall show that for ¸PR, (73) yields the known equation for hot-electron energy
losses in an in"nite medium [164]. Note that for ¸PR, tPR, we have

P
t

0

dt@ cos [u(k)(t!t@)]cos [k
l
(/(t)!/(t@))]"

p
2
Md[k

l
v#u(k)]#d[k

l
v!u(k)]N .

When deriving the latter equation, it is important to keep a proper order in proceeding to the
limits ("rst ¸PR, then tPR). As a result, we obtain from (73) (for ¸PR, tPR):

de
dt

"!

K2

8p2o¸Pdk k2u(k)d[(kv)2!u2(k)] . (75)

The result, given in Ref. [164], follows from (75) immediately.
Now let us consider a "nite system. We employ the following expansion:

e~*kl((t)"e~*klL 4*/(vt@L)"
=
+

n/~=

J
n
(k

l
¸)e~*nv@t ,

where J
n

is the Bessel function. This expansion makes in possible to reduce (73) to the form

de
dt

"!

K2

8p2o¸
+
(kl )
Pdk

M
(k2

M
#k2

l
)+
(n)

+
(`,~)

J
n
(k

l
¸)

n v/¸$u(k)

]GsinCn
v
¸

t!k
l
/(t)D# sin[$u(k)t#k

l
/(t)]H . (76)

Hence, we see that de/dt is a rapidly oscillating function for tPR. If v/¸'maxu(k),u
D

(u
D

is the Debye frequency), i.e. in the absence of resonances, then the mean value of this oscillating
function tends to zero since the averaging procedure implies the operation 1/t:t

0
dt@de/dt@ for tPR.

Thus, we have shown that the electron motion under consideration is not accompanied by the
energy losses associated with the Cherenkov generation of acoustic lattice vibrations, though the
latter mechanism of energy dissipation is dominant in bulk metals.

In the case of an in"nite metal, the expression for the total losses (due to all hot electrons) can be
derived by multiplying (76) by the number of electrons with energies exceeding the Fermi energy
(only such electrons can generate lattice vibrations). As a result, this expression can be reduced (see
Ref. [164]) to the form a(¹

%
!¹) where

a"
p2

6
nl

ms2
¹

(77)

(n is the electron concentration).
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For small metal particles, whose characteristic size ¸ satis"es the inequality

v
F
/¸'u

D
(78)

(where v
F

is electron velocity on the Fermi surface), these bulk losses have been shown to vanish.

6.3. Surface vibrations of small particles

Since we will be discussing metal particles with dimensions on the order of or less than the mean
free path, we can use the following model to calculate the surface energy exchange.

The electron gas is in a spherical potential well of radius R
0

(if thermal vibrations are ignored)
and height<

0
. This model was used in Ref. [170] to study optical absorption in island metal "lms.

As we have already mentioned, the reason for the energy exchange is an interaction of the
electron with thermal vibrations of the surface. These vibrations can be classi"ed somewhat crudely
as either shape vibrations (so-called capillary vibrations), in the course of which the volume does
not change, or surface vibrations, which are accompanied by a change in density (acoustic
vibrations). A theory for the surface vibrations of a spherical particle is set forth in detail (for the
case of vibrations of the surface of an atomic nucleus) in Ref. [171].

We begin our analysis with the capillary vibrations. We expand the radius of the vibrating
surface in spherical harmonics >jk(h,u):

R(h,u)"R
0G1#+

jk
ajk>jk(h,u)H . (79)

The Hamiltonian of the capillary vibrations can then be written in the following form, in
accordance with Ref. [171]:

H"

1
2
+
jk

MDj Da5 jk D2#Cj Dajk D2N,
1
2
+
jk G

Dpjk D2
Dj

#Dju2j Dajk D2H . (80)

Here pjk"Dja5 Hjk is a generalized momentum, and uj"(CjDj)1@2 is the frequency of the
capillary vibrations. The constants Dj and Cj depend on the island dimensions in di!erent ways.
According to Ref. [171], they are given by

Dj"MnR5
0
/j, Cj"p

4
R2

0
(j!1)(j#2) . (81)

Here M is the mass of the atom, n is the density, and p
4

is the surface energy.
It can be seen from (81) that the frequency of the shape vibrations depends strongly on the radius

of the metal island, R
0
:

uj"A
Cj
DjB

1@2
"Gp4

(j!1)j(j#2)
MnR3

0
H

1@2
. (82)

For the discussion below we will take a quantum-mechanical approach in which pjk and ajk
are replaced by corresponding operators, which are related to the operators of creation (b`jk) and
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annihilation (bjk) of surface phonons by

p( jk"i(Dj+uj/2)1@2(bjk!b`jk) , (83)

a( jk"A
+

2DjujB
1@2

(bjk#b`jk) . (84)

After this replacement, the Hamiltonian of the capillary vibrations takes the standard form:

HK "+
jk

+ujAb`jkbjk#
1
2B . (85)

To "nd the electron}phonon energy exchange, we need an explicit expression for the correspond-
ing Hamiltonian. According to the model adopted above, the potential energy of an electron in
a metal island is

=(r)"<
0
*(r!R(h,u)) , (86)

where

*(x)"G
1, x'0 ,

0, x(0 .
(87)

Using expansion (79) for R(h,u), we "nd from (86)

=(r)+<
0
*(r!R

0
)#d(r!R

0
)<

0
R

0
+
jk

ajk>jk(h,u) . (88)

The second term in (88) describes the energy of the electron}phonon interaction associated with the
surface vibrations. Writing this term in the second-quantization representation [using (84)], we "nd

HK
*/5

"<
0
R

0
+A

+
2Djuj B

1@2
StH

lnm
Dd(r!R

0
)>Hjk(h, u)Dt

l{n{m{
T(bjk#b`jk)a`

lnm
a
l{n{m{

. (89)

The operators a`
lnm

and a
l{>n{m{

in (89) create and annihilate an electron in the corresponding state.
The meaning of the subscripts on these operators becomes clear when we recall that the electron
wave function in a `spherical potential square wella is

t
lnm

(r)"
1

C
ln

R
l
(r)>

lm
(h,u) . (90)

Here C
ln

is a normalization factor, and the radial wave function is

R
l
(r)"G

j
l
(k@

l>n
r), for r(R

0
,

h(1)
l

(iK
l>n

r) for r'R
0

.
(91)

The quantity j
l
(x) in (91) is the spherical Bessel function, and h(1)

l
(x) is the spherical Hankel

function. In addition,

k@
ln
"A

2m
%

+2
e
lnB

1@2
, K

ln
"C

2m
%

+2
(<

0
!e

ln
)D

1@2
. (92)

Here m
%

is the mass of an electron, and e
ln

is the energy of the electronic levels in a spherical
square potential well. These conditions are found from the condition for the joining of the electron
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wave function and its derivative at the point r"R
0.

In view of the rapid decay of the electron wave
function inside the barrier, we write k@

ln
in the following form, as in Ref. [170]:

k@
ln
"k

ln
#*k

ln
, (93)

where k
ln

are the roots of the equation

j
l
(k

ln
R

0
)"0 . (94)

Eq. (94) corresponds to the case of an in"nitely deep potential well. Assuming that *k
ln

is small in
comparison with k

ln
(this point is easily checked), we "nd the following result from the condition for

the joining of the wave function and its derivative at the point R
0
:

*k
ln
"!k

ln
/R

0
K

ln
. (95)

Here we have used the asymptotic expression

R
ln
(r)+

1
iKr

expG!Kr!
ip
2

(l#1)H, r'R
0

. (96)

Since we will be interested below in the electron levels near (and above) the Fermi energy, we
can use the method of Ref. [170], "nding approximate solutions of (94) through the use of
the asymptotic representation of the spherical Bessel function:

k
ln
"

p
2R

0

(2n#l) . (97)

Now, in accordance with (93), (95), and (97), we have an explicit expression for k@
ln
. Consequently,

the electron wave functions in (90) and (91) have been determined completely. Using them, we can
put the Hamiltonian for the electron}photon interaction, (89), in the form

H
*/5

"<
0
+G

2+
Djuj

e
l>n

e
l{>n{

(<
0
!e

ln
)(<

0
!e

l{n{
)H

1@2

P
2p

0

duP
p

0

dh sin h>
ln
) (h,u)

]>
l{n{

(h,u)(bjk#b`jk)a`
lnm

a
l{n{m{

. (98)

6.4. Surface electron}phonon energy exchange

Now that we have explicit expressions for the electron and photon spectra and also for the
Hamiltonian of the electron}photon interaction, we can move to the problem of determining the
electron}photon exchange. This exchange can be taken into account systematically by a kinetic-
equation approach. For brevity, we will be using the notation

l"Ml, n,mN, q"Mj,kN . (99)

The change per unit time in the distribution of electrons among states caused by the scattering of
electrons by phonons is then given by

Rfll
Rt ,Ifll"+

l{q
=ll{qM[(Nq

#1) fll(1!fl{l{)!N
q
fl{l{(1!fll)]d[el{!el#+u

q
]

#[N
q
fll(1!fl{l{)!(N

q
#1) fl{l{ (1!fll)]d[el{!el!+u

q
]N . (100)
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Here fll"Sa`l alT is the electron distribution function, and N
q
"Sb`

q
b
q
T the phonon distribu-

tion function. As usual, the angle brackets mean an average over the statistical operator. Further-
more, in our case we have el"e

ln
, u

q
"uj , i.e., the spectrum is degenerate. It is simple matter to

derive an explicit expression for the transition probabilities, by "rst writing the interaction
Hamiltonian (98) in the compact form

HK
*/5

" +
l,l{,q

Cl,l{,q[bq#b`
q
]a`l al{ . (101)

Then

=l,l{,q"
2p
+

DCl,l{,q D2 . (102)

The energy transferred from the electrons to the phonons per unit time is

RE
Rt "

R
Rt+el fll"+elIfll . (103)

We note that the electron distribution in a metal island, fll , depends on only the electron energy:
Fll"f (el ).

Treating the phonon system as a heat reservoir (with respect to the electron subsystem), we take
the phonon distribution function N

q
to be Planckian with a temperature ¹. Expanding collision

integral (100) in a series in the small quantity +u
q
(i.e., actually expanding in the ratio of the phonon

energy to the Fermi energy), we "nd the following result for expression (103):

RE
Rt + +

l,l{,q
=l,l{,qNq

(+u
q
)2G

f (el)[1!f (el{ )]
k
B
¹ Hd(el{!el) . (104)

We can now write an explicit expression for the electron distribution function. Because of the
intense electron}electron interaction, the power acquired by the electron subsystem from the
external source becomes distributed among many electrons rapidly. As a result, a Fermi distribu-
tion with some e!ective electron temperature ¹

%
, is established:

f (e
v
)"GexpC

e
v
!e

F
k
B
¹

%
D#1H

~1
, (105)

where e
F

is the Fermi energy. Substituting (105) into (104), we "nd

RE
Rt "A

¹
%

¹

!1B +
l,l{,q
=l,l{,qNq

(+u
q
)2(el{!el )d(el!e

F
) . (106)

To pursue the calculations we need to use the explicit expression for=l,l{,q which follows from
(102) and from a comparison of (98) and (101):

=l,l{,q"
4p

(<
o
!e

ln
)(<

o
!e

l{n{
)GP

2p

0

duP
p

0

dh sin h>
ln
(h,u)>

l{n{
(h,u)>jk(h,u)H

2
. (107)
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Substituting (107) into (106) we "nd that an explicit dependence of the integrand on the indices
characterizing the electron states remains only in the spherical harmonic, because of the presence of
the function d(el!e

F
),d(e

ln
!e

F
) in the integral. We can thus sum over the electron indices (96).

In doing so, we make use of the orthogonality of the spherical harmonics:
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+
l/0

l
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m/~l

>
lm

(h, u)>
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(h@,u@)"
d(u!u@)d(h!h@)

sin h
. (108)

In our case the summation over l is bounded by the condition e
ln
(e

F
. This circumstance does

not introduce any signi"cant error, however, since the maximum value of l is large, l
.!9

&102. This
estimate of l

.!9
follows from the relation
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. (109)

As a result of these calculations, we "nd from (106)
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Here u
0
"<

0
!e

F
is the work function of the metal, and Nj"N(uj) is the Planckian

distribution function of the capillary vibrations.
We are left with the task of evaluating the phonon sum in (110):
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In (111) we have recognized that the energy corresponding to the Debye frequency of the
capillary vibrations is considerably smaller than k

B
¹ (at room temperature). It follows from (82) in

this case that
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As a result of these calculations we "nd
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In the literature, the power transferred from the electrons to the phonons is customarily written
in the form
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3 B a(¹
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!¹) . (114)

Here we have assumed that the particle is a sphere in our case. The constant a, which is
a measure of the rate of the electron-phonon energy exchange, is given in our case by
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R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 129



Let us evalute this quantity for a gold particle (a sphere) with the following parameter values:
n"6]1022 cm~3, v

F
"108 cm/s, R

0
"10~6 cm, p

4
"103 erg/cm2, u

D
"3]1012 s~1 [165], and

(<
0
/u

0
)2"5. We "nd a"2]1015 erg/(cm3 s deg).

The value found for a is two orders of magnitude lower than the corresponding value in bulk
metals. An experiment carried out to determine a in small particles has con"rmed this estimate
[172]. A reduction in the intensity of electron}phonon interaction in small particles has also been
found experimentally in another recent work [173]. In this work, a somewhat di!erent system has
been studied than in our case (a dielectric core surrounded by an ultrathin Au shell).

As we mentioned earlier, in addition to the shape vibrations (the capillary vibrations) of the
particles there are surface vibrations which do involve a change in density (acoustic vibrations).
The dispersion relation for these phonons is

u
nj"k

njs , (116)

where s is the sound velocity, and the wave vector k
nj is determined by the roots of the equation

jj (knjR0
)"0 . (117)

The interaction of the electrons with these vibrations can be dealt with by an approach like that
taken above. As a result we "nd the following expression for the value of a determined by the
surface acoustic vibrations:
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Here u@
D

is the Debye frequency of the acoustic vibrations, and o is the density of the material.
An estimate of a from (52) for the same gold particles as discussed above yields a value an order

of magnitude smaller than the result in (49). Consequently, the interaction with capillary waves is
predominant for these particles. We would simply like to point out that the idea of classifying the
vibrations as either capillary or acoustic is valid only if u

D
and u@

D
are substantially di!erent. This

condition is satis"ed in the case under consideration here.

6.5. Derivation of the equation describing the sound generation by hot electrons

The Hamiltonian of the interaction of an electron, residing in point r, with atoms of the lattice
can be written as

H
*/5

"+
n

M<(r!Rn!u(n))!<(r!Rn)N+!+
n

u(n)
R
Rr<(r!Rn) . (119)

Here < is an atomic potential, Rn is the radius vector of the nth lattice point and u(n) is a small
displacement of the nth atom from its equilibrium position due to lattice vibrations. For a simple
cubic lattice we have

R
(n)
"

3
+
i/1

n
i
a(0)
i

, (120)
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where a(0)
i

is the translation vector. The potential energy of the lattice vibrations can be expressed in
a standard way in terms of small displacements of the atoms from their equilibrium positions:

P"

1
2

+
n,n{

AK (n!n@)u(n)u(n@) , (121)

where AK (n) is a force matrix. Taking into account the kinetic energy of atoms with a mass M

K"

1
2
M+

n

u5 2(n) (122)

and the energy of their interaction with an electron, one obtains an equation for lattice vibrations:

MuK (n)#+
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AK (n!n@)u(n@)"!

R
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H
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R
Rr<(r!R

n
) . (123)

In most cases the electron}lattice interaction can be treated in a continuum approximation
where the discrete vector is considered as a continuous one. Bearing in mind the short-range
character of interatomic interactions we can also use the expansion

u(n@)Ku(n)#Al
R
RnBu(n)#

1
2Al
R
RnB

2
u(n)#2 . (124)

Here l,n@!n. Besides, let us take into account that

+
l

AK (l )"0, +
l

AK (l)l"0 . (125)

The former of these conditions considers that the elastic energy of the lattice does not change if
the crystal is displaced as a whole while the latter one allows for the symmetry A(l )"A(!l ). The
substitution of (124) into (123) with conditions (125) gives
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Taking into account Eq. (120), expression (126) can be written for the simple cubic lattice as
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We have thus obtained an equation known from the theory of elasticity of continuous media
which has a general form

ouK
i
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iklm
+
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u
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i
. (128)

Here o is the density of the medium and g
i

is a component of the external force. In the
approximation of the isotropic continuum, an elastic medium is characterized by two elastic
constants: modulus of dilatation (K

0
) and shear modulus (k

0
). For such a medium, instead of (127)

or (128), one obtains
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The full displacement vector u can be represented as the sum of its longitudinal and transverse
components:

u"u
,
#u

M
; $]u

,
"0; $ u

M
"0 . (130)

Combining (129) and (130), we have
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Rt2u

,
!s2+2

R
u
,
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1
k
$
r
<(r!R) . (131)

Here s2"(K
0
#k

0
/3)/o is the square of the longitudinal speed of sound. The expression for

u
M

will not be given here because its right side does not contain the force which could generate such
displacements.

Now it remains to carry out the last step in obtaining the equation that has been used in [164] to
treat the electron}lattice energy exchange in bulk metals. Let us again take into account that
the atomic potential is short-range in character. This allows the following approximation in the
description of the long waves in lattice vibrations:

1
k
<(r!R)+

KX
0

k
d(r!R)"

K
o

d(r!R) , (132)

where X
0

is the unit cell volume and K is a constant having the dimensions of energy. To clarify the
physical meaning of K, turn again to Eq. (119):
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R
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1
X
R
RrPd3R u(R)<(r!R)

+K
R
RrPd3R u(R)d(r!R)"!Kdiv u(r) . (133)

It is seen that under the assumptions used, H
*/5

is reduced to the known Bardeen and Shockley
deformation potential. Hence the constant K represents the constant in this potential.

In (131) and (132), r is a radius vector which determines the electron position. If the electron
moves along a trajectory, one should write r(t) instead of r. The vector r(t) determines the
coordinates of the electron in a moment t. Besides, in Eq. (119) the notation r is used instead of R. In
other words, Eq. (119) follows from Eq. (131) under the change of notations rPr(t) and RPr.

6.6. Concluding remarks about electron}lattice energy exchange

The results presented above demonstrate that the main mechanism of electron-lattice energy
exchange operating in bulk metals does not function in small metal particles. In the latter case,
hot electrons lose their energy in surface collisions. The "rst crude estimations of the surface energy
exchange in small metal particles were made in [70]. The fraction of the energy transferred by an
electron in its collision with a surface atom was taken to be proportional to the ratio of masses of
the electron and atom. In [174], this part was assumed to be proportional to the ratio of the
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electron mass to the total mass of surface atoms within a circle with a diameter j
%
, where j

%
is

the electron wavelength. The number of these atoms equals (p/4)j2
%
n
4

(n
4
is the concentration of the

surface atoms). Since n
4
+n2@3 and j

%
"2p+/m

%
v
F
K2/n1@3, the result agrees with the result [70] to

within a factor of the order of unity. Such an estimate has been used in Section 3. However, this
approximation can be justi"ed only for electrons with the energy considerably higher than the
Fermi energy. Electrons having low energies interact with the surface as a whole rather than with
individual atoms. A theory of such an interaction has been considered above. The theory gives an
analytical expression for the constant of the surface electron}lattice energy exchange. The value of
this constant appears lower by two orders of magnitude than the analogous constant in the
volume. This estimate has been corroborated experimentally [172]. Therefore, the suppression of
the electron}lattice energy exchange in small metal particles does occur and this e!ect must favour
the generation of hot electrons.

7. Optical absorption by small metal particles

7.1. Introductory remarks

In this section we shall concentrate on the peculiarities of optical absorption by small metal
particles and their ensembles. The particle dimensions are assumed to be smaller than the wave
length of the electromagnetic "eld. On the other hand, the dimensions may be either a smaller or
larger than the electron mean free path. Depending on this inequality, either a surface or volume
absorption mechanism is dominant. If the particles are small in the sense just speci"ed, the most
characteristic feature is the extremely high sensitivity of their optical absorbance in the IR range to
the particle shape and to wave polarization. We shall see that under equal conditions, the power
absorbed by particles which have the same volume but distinct shapes can di!er by orders of
magnitude. The same is true for absorption of the electromagnetic waves with di!erent polariza-
tions. These peculiarities play the decisive role in our model that explains electron and photon
emission from IMFs exposed to a powerful IR laser irradiation (see Sections 3 and 5). These
emissions depend exponentially on the electron temperature which, in turn, is determined by the
power being absorbed. This is the reason why strongly nonuniform emission currents are usually
observed from an IMF which, on the average, is uniform. In other words, the emission is
determined not by the average, but rather by an extremal absorption of individual islands
comprising the "lm.

It should be noted that optical absorption by small metal particles has been investigated for long,
and many relevant results have been published in monographs (see e.g. [165,175,176]). However,
a number of important regularities of absorption as a function of particle shape and wave
polarization have been elucidated only quite recently [177,178]. To better understand the di$cul-
ties emerging in the development of the all-embracing theory of optical absorption by small metal
particles, let us remind the absorption mechanisms. A substantial role in the absorption by small
particles is played both by the electric and magnetic components of the incident electromagnetic
wave. The electric component induces a local potential "eld inside the metal particle, and this
brings about the so-called electric absorption. The magnetic component of the incident wave
induces inside the particle an eddy electric "eld and eddy (Foucault's) currents. The corresponding
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absorption is named the magnetic absorption. Depending on the size and shape of the particles,
either electric or magnetic absorption can prevail. Therefore, a well-founded theory must involve
simultaneous evaluation of both electric and magnetic components of absorption for particles
whose dimensions can be either smaller or larger than the electron mean free path.

For the particles smaller than the electron mean free path, the particle shape a!ects not only the
values of the local "elds, but also the character of optical conductivity, which characterizes the
response of the system to these "elds. The optical conductivity of asymmetric particles is a tensor
with components dependent on particle shape.

Thus, the construction of a coherent theory of total absorption by small particles requires the
calculation of local potential and eddy "elds corresponding to speci"c particle shapes, as well as
currents induced by these "elds. However, the implementation of this program encounters formi-
dable di$culties. In particular, one fails in calculating the magnetic absorption for the nonspherical
particles shaped as a "nite cylinder or a parallelepiped for which one can carry out an exact
evaluation of the electric absorption. Considerable attention has also been given to ellipsoidal
particles (see e.g. [165]), but only the particles with dimensions larger than the electron mean free
path have been considered and the tensor of optical conductivity for them has not been calculated.
The above-mentioned and many other works have been concerned with the resonance (plasmon)
absorption and with the e!ect of the interaction between the small particles on the absorption.

In recent years, a method has been developed which allows, for the "rst time, a uni"ed approach
to calculation of electric and magnetic absorption by ellipsoidal particles whose dimensions can be
both smaller and larger than the electron mean free path [177,178]. The present section describes
this method and some results derived by it. Since the theory of electric absorption by metal
particles shaped as a sphere [170], cylinder [179] or parallelepiped [180] and having dimensions
smaller than the electron mean free path was based on a quantum mechanical approach, this
method will also be reviewed in Section 7.7. Section 7.8 is devoted to discussion of the resonance
(plasmon) optical absorption in IMFs.

Let us brie#y dwell on the practical importance of this problem. Obviously, the pronounced
dependence of the optical absorption by small particles on their shape, wave polarization and other
parameters can be exploited to tailor the re#ectance and absorbance of surfaces by deposition of
coatings which contain appropriate metal particles. In space, small particles can be dangerous for
satellites, but a laser beam can be used to destroy the particles if one knows how to tune the beam
to their maximum absorbance. Ensembles of small particles deposited onto surfaces or embedded
into matrices can exhibit a speci"c opto-acoustic e!ect [181], generate second harmonics [182]
and manifest other nonlinear e!ects. In recent years, a considerable attention has also been focused
on dusty gaseous plasmas containing clusters and small particles, including metal ones (see e.g.
[183,184]). Evidently, the radiative and absorbing ability of such plasmas can substantially be
determined by the properties of the small particles.

7.2. Statement of the problem

Consider a metal particle exposed to an electromagnetic wave

A
E

HB"A
E(0)

H(0)B expMi(k ' r)!utN , (134)
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where E and H are the electric and magnetic vectors of the wave, u and k are its frequency and wave
vector, and r and t denote the spatial coordinates and time, respectively. The wavelength j"2p/k
is assumed to be considerably larger than the size of the particle, so the metal particle resides
actually in spatially uniform, but time-varying, electric and magnetic "elds. The external electric
"eld E(0)e~*ut induces a local potential electric "eld E

-0#
inside the particle, which in turn gives rise

to electric current with the density j
%
. The magnetic "eld H(0)e~*ut induces in the particle a vortex

(eddy) electric "eld E
%$

, which gives rise to an eddy electric current with the density j
.
.

As a result, the total dissipation of the wave energy, i.e. absorption by the particle, is
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)EH
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#j

.
)EH
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) , (135)

where < is the particle volume.
The "rst term in Eq. (135) corresponds to electric absorption and the second to magnetic

absorption. To calculate the total absorption, it is necessary to "nd the potential electric "eld E
-0#

,
the eddy electric "eld E

%$
, and the corresponding current densities j

%
and j

.
. For spherical particles

that are either larger or smaller than the electron mean free path, the formulas determining
simultaneous electric and magnetic absorptions were obtained earlier (see, e.g., [185]). The total
energy absorbed by a spherical particle is

="

9
8p
<ueAC
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#

u2R2

90c2 D DE(0)D2 , (136)

where e@ and eA are, respectively, the real and imaginary parts of the dielectric constant, R is the
particle radius, and c is the speed of light. The "rst term in Eq. (136) describes electric absorption
and the second term magnetic absorption.

For the particle larger than the mean free path, the bulk scattering is dominant and the dielectric
constant of the metal has its standard form
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l
u
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1

u2#l2
, (137)

u
1

being the plasma frequency and l the collision rate.
Eqs. (136) and (137) can be used to estimate the relative contributions of electric and magnetic

absorption to the total absorption. For instance, for a gold particle one has u
1
+5]1015 s~1 and

l+1013 s~1. Assume that R"3]10~6 cm and that u is the frequency of a CO
2

laser, i.e.,
u+2]1014 s~1. Then Eq. (136) yields e@+!600 and eA+30, and the magnetic-to-electric
absorption ratio is

=
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90A
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c B

2
De
0
D2+2 . (138)

Thus, for the given set of parameters magnetic absorption is twice as large as electric. Obviously,
for di!erent parameters of the particle and a di!erent frequency range electric absorption can be
either larger or smaller than magnetic absorption. Hence, when studying the shape dependence of

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 135



optical absorption by a small metal particle, we must take into account both electric and magnetic
absorption. To our knowledge, the total absorbed power for asymmetric particles smaller than the
mean free path was "rst calculated in [177,178]. The only quantity studied earlier had been the
light-induced conductivity p(u), de"ned by

j
%
"pE

-0#
, (139)

for spherical [170] and cylindrical [179] particles, and for particles shaped like parallelepipeds
[180]. All these works use a quantum mechanical approach, and the shape of the particles is chosen
in such a way that the Schoedinger equation can be solved analytically for the potential well
corresponding to such a symmetry.

For particles larger than the mean free path, the light-induced conductivity is known
(p"ueA/4p), and the calculation of the e!ect of particle shape on absorption reduces to "nding
E
-0#

and E
%$

. The local electric "eld in the case of an ellipsoidal particle is independent of the
coordinates and can easily be expressed in terms of the components of the depolarization tensor.
This feature has been used to consider the dependence of electric absorption on the particle shape
in the case where bulk scattering is dominant (see, e.g., Ref. [165] and references therein).

For perfect conductivity eA<De@D, magnetic absorption by ellipsoidal metallic particles larger
than the electron mean free path was calculated by Levin and Muratov [186].

In most theoretical works treating optical absorption by island metal "lms, attention is focused
on the e!ect of the interaction between the metallic particles on E

-0#
and hence on electric

absorption (see, e.g., Ref. [187] and references therein). In some cases, this interaction can indeed
lead to a signi"cant change in the absorbed power [188]. However, the e!ect of particle shape on
electric and magnetic absorption, and the polarization dependence of the electric-to-magnetic
absorption ratio have not been studied. Meanwhile, these factors can change the absorbed power in
the IR region not just severalfold, but by several orders of magnitude.

7.3. Local xelds

In what follows we shall examine ellipsoidal metal particles. Such an assumption has several
advantages. First, by considering ellipsoids of di!erent oblateness and elongation, one can simulate
the majority of real particle shapes (from `pancakea to needle-like). Second, the potential (E

-0#
) and

eddy (E
%$

) local "elds for such particles can easily be calculated.
For ellipsoidal particles, the potential local electric "eld E

-0#
induced by a uniform external

electric "eld E(0) is known to be coordinate-independent [185]. The "eld E
-0#

can be linearly
expressed in terms of E(0) by employing the depolarization tensor. In terms of the principal axes of
the depolarization tensor, which coincide with the principal axes of the ellipsoid, one has
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(e!1)(E

-0#
)
j

, (140)

Here ¸
j

are the principal values of the components of the depolarization tensor, and P is the
polarization vector.

As we shall see below, the light-induced conductivity becomes a tensor for asymmetric particles
smaller than the mean free path, so Eq. (140) needs to be modi"ed.

This will be done somewhat later. It should also be noted that in the case of a particle ensemble,
the polarization vector in a given particle is induced not only by the external "eld, but also by the
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dipoles induced by this "eld in other particles [126,189]. Here we neglect such e!ects, but they can
easily be incorporated into the picture [188]. Calculating (E

-0#
)
j

from (140), we get

D(E
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(E(0)
j
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j
eA)2

. (141)

When the light-induced conductivity of the small particles becomes a tensor (we consider this case
later), we must substitute 4pp

ll
/u for eA in Eq. (141) (p

jj
is the jth diagonal component of the

light-induced conductivity tensor).
Let us now "nd the eddy local "eld E

%$
which obeys Maxwell's equations
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augmented by the boundary condition
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4
D
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where n
4

is a unit vector normal to the surface S.
Here the following remark is in order. On the right-hand side of the "rst equation in (142), we

take the external (spatially uniform) magnetic "eld H(0) for the magnetic "eld inside the particle.
Such an approximation is justi"ed if the depth d

H
of the skin layer is much larger than the

characteristic particle size R:

d
H
,(u/c ImJe )~1<R .

For an ellipsoidal particle, R is the semimajor axis of the ellipsoid. Below we assume that the
inequality is ful"lled. This constitutes the most interesting case since the contribution of eddy
currents to absorption is then at its maximum. Keeping in mind that H(0) is constant, we can write
the solution of the system of Eqs. (142) as
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and uniquely determine the set of constants a
ij

from the system (142) and the boundary condition
(143). The result is
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The other components of E
%$

can be obtained via cyclic permutations. In Eq. (145), R
x
, R

y
, and

R
z

are the semi-axes of the ellipsoid.
Knowing E

-0#
and E

%$
for particles whose characteristic size is larger than the electron mean free

path, it is easy to derive from Eq. (135) a formula for the absorbed power. Note that in this case the
currents are related to the "eld through relationships of type (139).

If for the sake of simplicity we consider an ellipsoid of revolution (with the z-axis chosen as the
axis of revolution), then combining (135), (141), (145), and (139) we get
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Fig. 7.1. Dependence of the factor of depolarization along the ellipsoid's axis of revolution on the ellipsoid's semiaxis
ratio.
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Eq. (146) generalizes formula (136) to the case of ellipsoidal particles. Note that in (146)
E(0)"H(0), and we do not express H(0) in terms of E(0) (as we did in (136)), so that the dependence of
the absorbed power on wave polarization can be more graphic. The principal values of the
components of the depolarization tensor for particles which are ellipsoids of revolution read
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where e2
p
"D1!R2

M
/R2

,
D.

Fig. 7.1 shows ¸
z

as a function of the ellipsoid semi-axis ratio R
M
/R

,
. The components ¸

j
of the

depolarization tensor can vary between zero and unity. The denominator in (141) is seen to contain
¸2
j

as a cofactor of (e@!1)2. As follows from the above estimates, one has e@2+4]104 in the
frequency range of a CO

2
laser. Consequently, DE

-0#
D2can strongly depend on particle shape. Fig. 7.2

depicts the dependence of DE
-0#

D2/DE(0)D2 on the semi-axis ratio R
M
/R

,
for the case where E(0) is

directed along the axis of revolution. It is seen that the ratio of the square of the local "eld to the
square of the external "eld can vary by several orders of magnitude. According to (146), this means
that electric absorption by metallic particles can vary by several orders of magnitude, depending on
particle shape and wave polarization.

This fact entails important consequences. As we noted earlier (see Sections 3 and 5), the electron
gas of the metal particles heats up when an island metal "lm is illuminated by laser light. This leads
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Fig. 7.2. Dependence of the ratio of the square of the local electric "eld inside the particle to the square of the wave's
electric "eld on the ellipsoid's semiaxis ratio for the chosen wave polarization.

to electron and photon emission. In particular, electron emission is here actually thermionic and,
according to Richardson's law, is proportional to expM!u/k¹

%
N, where u is the work function and

¹
%

is the electron temperature. The electron temperature ¹
%
is determined by the energy absorbed

by a particle, which in turn is strongly dependent on particle shape and wave polarization. In this
situation, introducing average (e!ective) absorption cross sections makes no sense. It is just the
particles absorbing the most light that are the emitters of electrons. In other words, these
phenomena are determined primarily by particles with maximum absorption and not by particles
with some average (`e!ectivea) absorption, which constitute the majority in an island "lm.

7.4. Electron distribution function

In Section 7.3 we determined the local "elds and derived a general expression for the power
absorbed by an ellipsoidal metal particle in the case of bulk scattering (i.e., for particles larger than
the mean free path). Here we address the case of particles smaller than the mean free path. The more
general method we now develop can also be applied to particles larger than the mean free path.

To determine the absorbed power, it is necessary to derive expressions for the high-frequency
currents induced in the particle by the known local potential and eddy electric "elds. By de"nition,
the current density is

j"
2e

(2p+)3P*fd3(mv)"
2m3e
(2p+)3P*f (*) d3v , (148)

where f (*) is the electron velocity distribution function, and e and m are electron charge and mass.
In the presence of local "elds, the distribution function can be represented as a sum of two terms,

f (*)"f
0
(e)#f

1
(*) ,
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where f
0
(e) is the Fermi distribution function, depending only on energy e"mv2/2, and f

1
(*) is

a correction generated by the local "elds. f
1
(*) can be found by solving the appropriate kinetic

equation. In the linear approximation, the kinetic equation in the electromagnetic "eld assumes the
form

(l!iu) f
1
#* ) Rf1Rr #eF ) * Rf0Re "0 . (149)

Here we have taken into account that f
1
Je*ut; l is the bulk collision rate and

F"E(0)
-0#

#E(0)
%$

. (150)

Eq. (149) must be augmented by boundary conditions for f
1
. We assume, as is often done, the

electron scattering at the boundary to be di!use, i.e.,

f
1
(r, *)D

S
"0 for v

n
(0 , (151)

where v
n

is the velocity component normal to the surface S.
Based upon these assumptions, Lesskin et al. [190] studied the magnetic scattering by a spherical

metal particle. To solve Eq. (149) with the boundary conditions (151), we employ the method of
characteristic curves, which demonstrated its e!ectiveness in Ref. [190]. However, for ellipsoidal
particles the method used in Ref. [190] needs to be modi"ed. The essence of this modi"cation is as
follows.

We transform to a deformed system of coordinates in which the original ellipsoid particle,

3
+
i/1

x2
i

R2
i

"1 (152)

becomes a sphere of radius R. In other words, we assume that

x
i
"x@

i
/c

i
, c

i
"R/R

i
, R"(R

1
R

2
R

3
)1@3, c

1
c
2
c
3
"1 . (153)

Under such a deformation the shape of the particle changes, but its volume is conserved. This
means that the electron number density remains unchanged, and so does the normalization of the
function f.

In the new system of coordinates, Eq. (149) and the boundary conditions (151) acquire the form

(l!iu) f
1
#*@ ) Rf1Rr@#eF(r@) ) * Rf0Re "0 , (154)

f
1
(r@, *@)D

r{/R
"0 for r@ ) *@(0 . (155)

In (154) and (155) we also introduced the `deformeda velocity components

v@
i
"c

i
v
i
. (156)

Eq. (154) for the characteristic curves has the form

dx@
i
/v@

i
"!df

1
/l8 f

1
"dt@, l8 ,l!iu , (157)
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which implies that

r@"*@t@#R , (158)

where R is the radius vector whose tip is at the given point of the sphere from which the trajectory
begins. Here the parameter t@ can formally be considered as the `timea of motion of the electron
along the trajectory.

If we transfer v@t@ in (158) to the left-hand side and square the resulting equation, the solution of
this new (scalar) equation can be written as

t@"
1
v@2

[r@ ) *@#J(R2!r@2)v@2#(r@ ) *@)2] . (159)

The characteristic curve (159) depends only on the absolute value of R and not on the orientation of
R. Such independence of the characteristic curve from the position of a point on the surface was
achieved by transforming to the coordinates (153).

From (159) we also see that t@"0 at r@"R. Bearing this in mind, we can use (157) to "nd an
f
1

that satis"es Eq. (154) and the boundary condition (155):

f
1
"!

Rf
0
Re P

t

0

dq expM!v8 (t@!q)Ne* )F(r@!*@(t@!q)) . (160)

Taking into account the coordinate dependence of F (see (150) and (145)), from (160) we obtain

f
1
"!e

Rf
0
Re G* )E(0)

-0#
#

3
+

i,j/1

a
ij
v
iC

x@
j

c
j

#v
j

R
Rl8 DH

1!expM!l8 t@N
l8

. (161)

If initially the particle is spherical, then a
ij
"!a

ji
and the last term in (161) vanishes.

7.5. Electric absorption

Combining (161), (148), and (135), we obtain the following expression for the electric absorption:

=
%
"

e2m3

(2p+)3
ReC

1
l8 PD* )E(0)

-0#
D2d(e!k)(1!expM!l8 t@N) d3r@d3vD , (162)

where k is the Fermi energy, and where we considered the fact that

Rf
0
/Re"!d(e!k) .

Allowing for the form of t@ (according to (159)), it is convenient to integrate (162) with respect to r@
by directing the z@-axis along the vector *@ and introducing two new variables,

f"
r@
R

, g"
v@
R

t@ . (163)
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The result reads

P(1!expMl8 t@N) d3r@"2pP
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Further calculation of the integral is easy, and as a result from (162) we obtain

=
%
"

pe2m3R3

(2p+)3
ReC

1
l8 Pd3v D* )E(0)

-0#
D2d(e!k)t(q)D , (164)

where we have introduced

t(q)"
4
3
!

2
q
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4
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4
q2A1#

1
qBexpM!qN ,

(165)

q,q
1
!iq

2
"

2l
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R!i
2u
v@

R .

Eq. (164) gives the general form of the electric absorption by an ellipsoidal metal particle for an
arbitrary bulk-to-surface scattering ratio.

The above case of bulk scattering (the Drude case) follows from (164) when q<1. Then,
according to (165), t(q)"4/3, and from Eq. (164) we obtain for the electric absorption

=
%
+<

e2n
m

l
l2#u2

DE(0)
-0#

D2
2

,<p(u)
DE(0)

-0#
D2

2
, (166)

where n is the electron concentration, which can be expressed in terms of the Fermi velocity v
F

or
the Fermi energy k:

n"
8p
3

(mv
F
)3

(2p+)3
, v

F
"S

2k
m

. (167)

Obviously, Eq. (166) corresponds to the "rst term in (146).
We now analyze the situation when the particle is smaller than the mean free path, and hence

surface scattering is dominant. This corresponds to

q
1
"(2l/v@)R;1 . (168)

As for q
2
,2uR/v@, when surface scattering is dominant, this parameter can be either larger or

smaller than unity. It is of interest then to study the two limits

q
2
"(2u/v@)R<1 , (169)

q
2
;1 . (170)
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The case (169) corresponds to high-frequency surface scattering, and (170) to low-frequency surface
scattering.

If we ignore bulk scattering (q
1
P0) and assume that q

2
is arbitrary, then (165) yields

ReC
1
v8
t(q)D+

1
uC

2
q
2

!

4
q2
2

sin q
2
#

4
q3

(1!cos q
2
)D . (171)

This expression is present in (164). We see that terms which are oscillating functions of particle
size have emerged. Such oscillation e!ects in spherical particles were studied by Austin and
Wilkinson [191] for electric absorption, and by Lesskin et al. [190] for magnetic absorption. These
e!ects, which are moderate by themselves, are even less important for asymmetric particles.
The reason is that the `deformeda velocity v@, which enters into the expression for q

2
, is angle-

dependent. In view of this, the integration over angles smooths out the oscillation e!ects.
Furthermore, Eq. (171) implies that these oscillations can be essential only when q

2
"2Ru/v@+1,

i.e., when the electron transit time from wall to wall, 2R/v@, coincides with the period of the
electromagnetic wave. In the limiting cases given by (170), these e!ects are negligible.

Let us turn to the high-frequency case (169). For q
2
<1 and q

1
;1 we have

ReC
1

l8 t(q)D+
2

uq
2

,

which in accordance with (164) gives

=
%
+

pe2m3R2

(2p+)3u2Pd3v v@D* )E(0)
-0#

D2d(e!k) . (172)

To study the dependence of absorption on particle shape, it is su$cient to consider an ellipsoid
of revolution. In this case

v@"RS
v2
M

R2
M

#

v2
,

R2
,

, (173)

where v
M

and v
,

are the electron velocity components perpendicular and parallel to the axis of
revolution. With allowance for (173), the integral in (172) can easily be calculated:
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Here u
M

and u
,

are functions of the ellipsoid eccentricity (we note once more that
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(176)

Having the general expression (174) for the electric absorption of an ellipsoidal metal particle in the
case of high-frequency scattering, we can easily obtain the components of the light-induced
conductivity tensor. To this end, we write the expression for electric absorption in terms of the
principal values p

jj
of the conductivity tensor,

=
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1
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p
jj
DE(0)
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and compare it with (174). As a result we have
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(178)

The case of a spherical particle follows from (174)}(177) as e
p
P0.

Allowing for (175) and (179), we "nd that

p
M
"p

,
"

ne2
mu2

3
4

v
F
R

. (179)

Comparing (178) and (179), we can see that the light-induced conductivity of metallic particles
smaller than the mean free path is a scalar quantity only if the particles are symmetric.

In the general case of asymmetric particles, the light-induced conductivity becomes a tensor
whose components depend on particle shape. Fig. 7.3 illustrates the dependence of p

M
/p
,

on the
ellipsoid semiaxis ratio R

M
/R

,
. Eq. (178) was used to plot the curves. We see that the components

of the light-induced conductivity tensor di!er considerably, depending on the degree of particle
asymmetry.

Comparing (179) with the expression for the conductivity that follows from (166) for u<v,
we can see that in the case of a spherical particle, the expression for the electrical conducti-
vity dominated by surface scattering can be obtained from a similar expression for the Drude
case by formally substituting 3v

F
/4R for l. This method is widely used, but in the case of

asymmetric particles this procedure leads to incorrect results. The appearance in (174) of the factor
v
F
/R

M
, which has the formal meaning of `transit frequencya, is due to the fact that the particle

volume < can be expressed as a separate factor. But when surface scattering dominates, the
absorbed power is proportional to the surface area of the particle. This can easily be seen by
using (174)}(176) to derive simple analytic expressions for highly elongated and highly #attened
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Fig. 7.3. Dependence of the ratio of conductivity normal to the ellipsoid's axis of revolution (p
M
) to conductivity parallel

to this axis (p
,
) on the ellipsoid's semiaxis ratio in the case u;v
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.
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(181)

The factors </R
M
+R

,
R

M
in (180) and </R

,
+R2

M
in (181) are simply the surface areas of the

corresponding ellipsoids in the speci"ed limits.
The fact that absorption by small spherical particles is proportional to their surface area was

reported earlier in [170,174].
Let us now examine the case (170) of low-frequency surface scattering, i.e.,

q
1
;q

2
;1 . (182)

Here the frequency of the electromagnetic wave is much higher than the bulk collision rate, but is
much lower than the frequency of transit from wall to wall. If condition (182) is satis"ed, we have
t(q)+q/2, and from (164) we obtain

=
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After evaluating the integral in (183) we can transform the result to (177), where instead of (178) we
will have
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(185)

Formula (183) for the absorbed power assumes a simple analytic form for the limits of highly
#attened and highly elongated ellipsoids:
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In addition, at R
M
"R

,
, Eq. (183) yields the well-known result for a spherical particle:

=
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D2 . (188)

Fig. 7.4 depicts the dependence of p
M
/p
,

on the ellipsoid's semiaxis ratio R
M
/R

,
constructed

from Eqs. (184) and (185). Comparing Figs. 7.3 and 7.4, we see that the e!ect of particle asymmetry
on the ratio of the components of the conductivity tensor di!ers not only quantitatively, but also
qualitatively in the high- and low-frequency cases (provided that surface scattering is dominant).

7.6. Magnetic absorption

Magnetic absorption is given by the second term in (135). Combining (144), (148) and (161), we
obtain an expression for it:
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, (189)
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Fig. 7.4. Dependence of the ratio of conductivity normal to the ellipsoid's axis of revolution (p
M
) to conductivity parallel

to this axis (p
,
) on the ellipsoid's semiaxis ratio in the case u;v

F
/R

M
, v

F
/R

,
.

where the summation is performed over all indices from 1 to 3. To calculate the integral with
respect to r@, we direct the z@-axis along the vector r@. Then, according to (159), t@ is independent of
the angle u@ (in the plane perpendicular to v@). Hence in (189) we can "rst integrate with respect to
u@. It can be shown that
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where h@ is the angle between r@ and v@ .
After (190) is inserted into (189), the calculation becomes similar to one used in calculating

expression (162) for the electric absorption. As a result, Eq. (189) becomes
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(192)

Eq. (191) determines the magnetic absorption by a particle in general form for an arbitrary ratio
of the bulk and surface contributions. For spherical particles, the last term on the right-hand side of
Eq. (191) vanishes, since in this case a

ij
"!a

li
.

Information about the scattering mechanism is contained in the quantities q"2Rl8 /v@ and
l8 ,l!iu. From (191) we can obtain simple analytic expressions in the limits of pure bulk
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scattering and pure surface scattering. In the "rst case (DqD<1), we arrive at the known expression
for magnetic absorption determined by the second and third terms on the right-hand side of
Eq. (146). When surface scattering is dominant, the high-frequency case is the most interesting,
since the eddy "eld E

%$
is proportional to the frequency, with the result that the relative role of

magnetic absorption grows with frequency. We therefore assume that q
1
;1 and q

2
<1. Then

from (191) it follows that
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Again, in the case of an ellipsoid of revolution, the integrals in (193) can easily be evaluated and
we obtain
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Here, in addition to the function u
M

de"ned in (175), we have introduced a new function U:
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(195)

For spherical particles (i.e., as e
p
P0), the result obtained by Lesskin et al. [190] follows from

(194):
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Eq. (194) acquires a simple analytic form for the limits of highly elongated and highly #attened
ellipsoids:
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From (197) it follows that in the case of a highly elongated ellipsoid, the magnetic absorption is
twice as high when the magnetic "eld is perpendicular to the axis of revolution than when it is
parallel to it. The situation is similar for bulk scattering.

Earlier we estimated the relative contribution of the electric and magnetic terms of spherical
particles to absorption (see Eq. (138)). Now, having the expressions for the electric (Eq. (174)) and
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Fig. 7.5. Dependence of the magnetic-to-electric absorption ratio on the ellipsoids semiaxis ratio for the case when H(0) is
parallel to major semiaxis.

Fig. 7.6. Dependence of the magnetic-to-electric absorption ratio on the ellipsoids semiaxis ratio for the case when E(0) is
parallel to major semiaxis.

magnetic (Eq. (194)) absorption by asymmetric particles, we can return to that problem. For an
asymmetric particle, the ratio of the electric and magnetic contributions to absorption (at "xed
frequency) is strongly dependent on the degree of particle asymmetry and wave polarization.
Figs. 7.5 and 7.6 show the dependence of=

.
/=

%
on the ellipsoid semi-axial ratio for two di!erent

polarizations. It can be seen that these curves di!er strongly not only quantitatively but also
qualitatively.
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Optical absorption in small metal particles and their arrays has also been investigated in a recent
work [192]. A substantial dependence of the absorption on the size and shape of the particles has
been found.

7.7. Quantum kinetic approach

As mentioned above, the majority of studies concerning the dependence of the optical conductiv-
ity on the shapes of metal particles have been performed in terms of quantum mechanics. This
approach is necessary only for very small (1 nm) particles, when quantization of the electron
spectrum must be taken into account. In all other cases, the quantum kinetic approach is only
convenient when the solutions of the Schrodinger equation with the relevant potential wells
are known.

Here we shall consider this approach brie#y. It provides an opportunity to treat the absorption
by small metal particles from a new point of view and to analyze the compatibility of the two
treatments. Thus, we start from the equation for the statistical operator o( :

i+ Ro( /Rt"[HK o( ] . (199)

The Hamiltonian HK for an electron in the electromagnetic wave "eld described by the vector
potential A is given by the standard expression
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Here HK
1

is written in the linear approximation with respect to A; ;(r) is the electron potential
energy; p( is the momentum operator.

If one considers only electric absorption, i.e., disregards the eddy currents, then the electric "eld
within the metal particle may be treated with su$cient accuracy as spatially homogeneous
(for wavelengths much greater than particle dimensions). The vector potential may be written as

A"A(0)e~*ut`gt , (202)

where g is the adiabatic parameter.
Operator o( may be written as a sum of two terms

o("o(
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1
, (203)

where o(
0

is the statistical operator of the system without electromagnetic wave, o(
1

is the correction
to A linear with respect to o(

0
.

We linearize Eq. (199) with respect to A, rewrite it on the proper basis of HK
0

and thus obtain
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On this basis we have
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DbTfb ,

where fa is the occupation function of the ath state, i.e.

fa"2f (ea),2Mexp[(ea!k)/k¹]#1N~1 . (205)

In Eq. (205), f is the Fermi function, ¹ is the temperature. We have taken into account that each
state with energy ea can be occupied by two electrons with opposite spins.

Eq. (204) yields
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The current density operator may be written as
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and the statistical average of the current density is given by
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The last equality was derived making use of Eq. (206) and the normalization relation for fa , i.e.,

+ fa"<n . (209)

We employ the relation between the wave electric "eld E
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and the vector potential
A (E
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"i(u/c)A) and write the general expression for the current density operator components,
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Then Eq. (208) yields the expression for the complex tensor
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The relation between the complex conductivity tensor and the complex dielectric permittivity
tensor is given by

p
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Making use of the relation
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(for gP0), we "nd from Eqs. (135), (210), and (211) that the electric absorption is described by
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The last relation is written in the coordinate system associated with the principal axes of the
conductivity tensor. It may be applied to calculate the principal values of this tensor (real values of
the complex conductivity tensor). To do this, we have to calculate the matrix elements SaDp( E

-0#
DbT

on the proper basis of the Hamiltonian HK
0
, i.e., to specify the model.

We shall consider the simplest model of a parallelepiped particle that was proposed in Ref. [180].
The wave functions and energy spectrum of an electron in a parallelepiped potential well with

sides a
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are given by the simple expressions
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The matrix elements of interest are readily calculated in terms of the wave functions (214).
If the state SaD is described by the set of quantum numbers Mn

j
N, and the state DbT by the set Mn@

j
N,

then we "nd that
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Eq. (216) was derived within the context of the identity
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Substituting Eq. (216) into Eq. (213) and making use of Eq. (217), we obtain

=
%
"

2p5e2+4

m4u3 G
DE(0)

x, -0#
D2

a6
1

+
n1 , n@

1

n2
1
n@
1
2[1!(!1)n1`n

@
1]

[ f (eb)!f (eb#+u)]d(ea!eb!+u)#2H . (218)

Formula (218) gives only the absorption component proportional to DE(0)
x, -0#

D2. The other
components may be obtained by obvious interchanges of subscripts.

If the electron spectrum quantization is unessential, then we may employ the relation
p
k
"+(pn

k
/a

k
) and replace the sum entering (218) by an integral over the quasi-continuous
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momentum. Thus, we obtain
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The factor 1/8 before the integral, has appeared because integration over the region p
k
50

was extended to all values of the vector p. Moreover, when deriving Eq. (219) from Eq. (218), we
replaced the periodic function M1!(!1)nN of the index n by its average value which is equal to one.

The case of essential quantization of the electron spectrum, as well as other details of the
parallelepiped model, are considered in Ref. [180].

Let us now compare the approaches and solutions of this model with the results of other
models. First, the optical conductivity in this model is also a tensor quantity (see Eq. (219)).
Second, as follows from Eq. (166), the replacement of the frequency l by the frequency tensor
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2
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3
) in the high-frequency Drude case (u<l) formally results in expression

(219). It appears to contradict the reasoning given when deriving formulas (180) and (181).
However, no contradiction occurs: for the parallelepiped shape, </a

k
"S

k
is just the area of the

surface perpendicular to kth component of the "eld E(0)
-0#

. Therefore, the electric absorption that is
described by Eq. (219) is proportional to the parallelepiped surface area.

The idea that for l(v
F
/R only electron}surface collisions are responsible for the electric

absorption is con"rmed by comparison of our results with the conclusions of Ref. [126] (see also
Section 5). In works [122,126], a method was proposed which makes it possible to study inelastic
re#ection of electrons from the potential barrier and electron inelastic tunneling through the
barrier. The electrons can either absorb or emit light quanta. The uni"ed approach allows the
consideration of the bremsstrahlung and inverse process, direct and inverse photoe!ect, etc. In
particular, the cross-section of the inelastic re#ection from a potential wall perpendicular to the
x-axis is given by [126]
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where signs (#) and (!), respectively, correspond to the absorption and emission of a quantum.
(To avoid misunderstanding, we note that the authors of [126] employ a real vector potential,
whereas the treatment in this section involves a complex vector potential.)

Making use of Eq. (220) we may write the energy absorbed by an electron gas scattered on
a surface of area S

x
:
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In the second term of Eq. (221) we introduce a shift e
x
Pe

x
!+u and take into account that dp

x
v
x
"de

x
, f (e) f (e!+u)Pf (e#+u) f (e); D(~)(e#+u)"D(`)(e

x
).

Then the two terms of Eq. (221) may be combined and reduced to the form
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This expression, with the accuracy of the factor 1/2, reproduces formula (222) for k"1. But since
the parallelepiped has two surfaces S

x
(the front and the back walls), the coincidence of the results

obtained by means of the two approaches is obvious.
Inasmuch as only one surface was taken into account in Eq. (222), this formula could not contain

the collision frequency of the type v
F
/a

1
. This is another argument that supports the above

interpretation of Eqs. (180) and (181).
It is also instructive to compare the transversal conductivity of a strongly elongated ellipsoid
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), calculated in this section, and of a cylindrical sample, calculated in [179]. According to

(180) and (177), one has for the ellipsoid
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For the cylindrical sample at k<+u, calculations [179] give
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It is seen that expressions (223) and (224) coincide to within a factor of 3p2/32+1, as should be
expected in this limiting case (R

,
<R

M
). It is recalled that formula (223) was obtained by a classical

approach whereas formula (224) was derived quantum-mechanically (the discrete spectrum was
replaced by continuous one only in the last stage of calculations).

7.8. Resonance plasma absorption of light in IMFs

Up to now, we have concentrated on the optical absorption by small metal particles in the IR
range (i.e. far from the plasmon resonances), since our main goal was to explain the unusual
phenomena observed while IMFs are exposed to a CO

2
laser beam. We recall such e!ects as

electron emission (occurring in spite of the fact that the metal work function exceeds the energy of
CO

2
laser quanta by a factor of +40) and light emission, which is distributed rather nonuniformly

over the "lm and contains much more energetic quanta in its spectrum than those in the incident
laser beam. To complement the physical picture of optical absorption in IMFs, we shall now brie#y
discuss some peculiarities of resonance absorption in small metal particles and their ensembles.

Some speci"cations are to be introduced at the beginning of this treatment. In Section 7.3, we
have calculated the local electric "eld in the interior of a single metal particle placed within
a medium with a dielectric constant e

.
"1. The square of the modulus of this "eld is given by (141).

In a more general case when e
.
O1, formula (141) turns to
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This expression must be substituted for the "rst summand in (146), which characterizes the
electric absorption. In the case when the particle dimension is smaller than the electron mean free
path, it is also necessary to make the change

eAP(4p/u)p
jj
(u) , (226)

where p
jj
(u) are the components of the optical conductivity tensor.

The plasma frequency is determined from the resonance condition
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The value e@ is given by formula (137), so condition (227) results in the following expression for
the plasma frequencies:
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This expression shows that an ellipsoidal metal particle is characterized by three plasma
frequencies corresponding to charge oscillations along three principal axes of the ellipsoid. As
noted above, the electric absorption is given by the "rst summand in (146), which in the case e
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and with the account of (226) and (227) assumes the shape
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It is seen that the electric absorption has maxima at the plasma frequencies (228). For particles
smaller than the electron mean free path, the change (226) additionally modi"es the shape of the
plasma absorption peaks.

As one passes over from a single metal particle to an ensemble of such particles (e.g. an IMF), the
absorption acquires some new important features. The localized electron density oscillations in
separate particles possess oscillating dipole moments, which interact with each other and arrange
themselves into collective modes. The simplest way of taking into account the interaction of the
particles is to change the external "eld E(0) in (140) by the sum of this "eld with the "elds of all
dipoles induced by it in the rest of the particles. The summation of the dipole "elds can be easily
carried out in various model geometries, e.g. for a system of identical ellipsoidal particles located in
the points of a square lattice [189,193,194]. It has been shown that in such a case the Coulomb
interaction can be formally considered through the change of the depolarization factor ¸

j
in

formulas (225) and (227)}(229) by an e!ective factor
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j
P¸

j
!(</4p)b

j
. (230)

The value b
j
has been calculated in [189,193,194] and many other works (see also Appendix B).

As can be seen from (228) and (219), the change (230) leads to a renormalization of the plasma
frequencies and peak intensities.
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It should be noted that a huge literature is devoted to plasma resonance absorption in dispersed
systems (see e.g. [165,175,176,195] and references therein). We have brie#y dwelt on this mecha-
nism only to stress that a strong optical absorption by small metal particles is possible not only in
the IR range considered in detail above, but in the visible range as well. Correspondingly, the
nonequilibrium heating of electrons and phenomena accompanying it are also possible in this case.
It should also be recalled that radiative decay of plasmons excited in the inelastic tunneling of
electrons or by hot electrons seems to be one of the mechanisms responsible for the light emission
from IMFs (Section 4).

7.9. Conclusions about optical absorption of small particles

In this section we have given expressions for electric and magnetic absorption by nonspherical
particles smaller than the electron mean free path [178]. We have found that for small asymmetric
particles, their electric and magnetic absorption can vary by several orders of magnitude
under particle shape variations with the volume remaining constant. Such drastic variations in
absorption can also occur under variations of wave polarization. Simple analytic formulas have
been derived for highly elongated and highly #attened particle shapes.

We have also established that for nonspherical metal particles smaller than the electron mean
free path, the light-induced conductivity is a tensor, in contrast to the Drude case. The components
of the conductivity tensor have been found for particles in the form of an ellipsoid of revolution. We
have studied the dependence of these components on the degree of particle asymmetry.

It should be emphasized that most theoretical investigations of the optical properties of island
metal "lms were devoted to the mutual e!ect of the particles on local "elds and electric absorption.
In recent years the re#ection of IR radiation from a layer of small metallic particles has also been
studied (see, e.g., Ref. [196]). Allowance for the mutual e!ect of particles can indeed strongly
in#uence the values of the local "elds. Estimates have shown [188] that in favorable cases,
allowance for this mutual e!ect can alter the local "eld inside a given particle severalfold. However,
our results presented in this section show that allowing for particle shape together with considering
the electric and magnetic absorption, can change the total absorption by several orders of
magnitude. These factors, therefore, must be taken into account from the outset. These features of
absorption are even more important in such phenomena as electron and phonon emission from
island metal "lms illuminated by laser light. (The fact that absorption by small spherical particles is
proportional to their surface area was reported earlier by Manykin et al. [174].) It is in such
phenomena that the extreme cross sections of absorption by an ensemble of metal islands play
a much more important role than the average (e!ective) cross sections.

8. Examples of applications of island metal 5lms

Various phenomena and properties speci"c to IMFs have long been attracting many investiga-
tors who tried to develop new cathodes and sensors using these "lms. As usual in practical
applications, high stability, reproducibility and economical e$ciency of performance are the most
important operational features to be attained in devices based on IMFs. The technological
experience accumulated to date shows that these stringent requirements can be satis"ed.
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8.1. IMF cathodes

The phenomenon of electron emission induced by passing current through IMFs has been
utilized to develop `colda cathodes for vacuum microelectronic devices, which combine advantages
of vacuum electronics (such as high thermal and radiation stability) and solid-state electronics
with its as yet inexhausted potentialities of miniaturization. A considerable e!ort, especially in the
Saratov plant of receiver-ampli"er electron tubes, has been undertaken in the development of gold
IMF cathodes activated by barium oxide [74,197]. A technology has been elaborated allowing the
fabrication of such cathodes with an e$ciency of 2}5mA/W and the emission to conduction
current ratio c up to 5%. The emission current from a cathode cell sized 0.5 cm]20lm at the
working voltage 10}15 V amounted to tens of lA and was stable in the continuous operation mode
for about 1000 h [74]. Such cathodes were exploited in indicating displays. A still higher e$ciency
has been achieved with IMF cathodes based on refractory metals [79,198,199]. For example,
a Mo thin "lm cathode emitter sized 15lm] 3mm produced a stable current up to 100lA at
c"10}15% [198]. However, a disadvantage of this cathode is a comparatively high working
voltage of 50}80 V. It should be noted that IMF cathodes can be fed both by direct and alternating
current.

A few types of triode cells using IMF cathodes have been proposed [200,201]. Quite good results
have been obtained with comparatively simple cells depicted in Fig. 8.1a and b. A controlling
electrode (`gatea) and an anode were evaporated on a dielectric interlayer previously deposited on
the contacts of the cathode. To reduce the leakage currents between the electrodes, the interlayer
can be shaped by etching as shown in Fig. 8.1a. The anode current}voltage characteristic exhibits
"rst a fast growth of the current with increasing voltage and then a leveling-o! at the electric "elds
comparable to the average "eld within the "lm (Fig. 3.3). An e!ective control of the current can be
achieved when the operating point is chosen in the steep section of the anode current}voltage
curve.

8.2. A gold IMF microcathode

As noted above (Sections 2 and 3), electrons are not emitted uniformly from the whole island
"lm, but rather come out from the emission centers having size 41lm and scattered over the "lm.
This may complicate the focusing of electron beams obtained from the cathodes representing long
and narrow "lms. A more expedient choice in this case is a point-like IMF microcathode [202]. An
example of such a cathode fabricated on a pyroceram substrate with Mo contacts is shown in
Fig. 8.2. The gap between the contacts was 20]300lm2, and an Au "lm was evaporated into the
gap as a strip only 20}30lm wide. The work function of the "lm was reduced by a BaO overlayer.
This cathode gave a stable electron emission at the level of 0.1lA for a few thousand hours under
technical vacuum. The half-width of the electron energy distribution was about 0.5 eV.

8.3. Electron emission from island xlms of LaB
6

Lanthanum hexaboride is a high-melting compound with metallic conductivity widely used as
an e!ective electron emitter. LaB

6
"lms were evaporated in vacuum using the laser ablation

technique. The substrates were glass plates with previously deposited Pt contacts. The gap between
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Fig. 8.1. Schematic of two triode cells with IMF cathodes.;
&
is the voltage apllied to the "lm,;

!
the anode voltage and

;
3

the regulating voltage.

Fig. 8.2. Electron emission current as a function of applied voltage for an Au "lm (1) and the same "lm covered with BaO
(2). Inset (a) shows a typical con"guration of the contacts and "lm in an IMF microcathode.

the contacts was 10 lm. The "lms had an island structure which rearranged in the course of
electroforming and after this procedure their conduction current}voltage curves assumed a strong-
ly pronounced nonlinear character [203], as in the case of island metal "lms. Simultaneously,
electron emission set in. The examination of the LaB

6
"lm cathodes in an emission microscope

showed that two distinct working regimes are possible, depending on the cathode structure. In
one case the emission stems from small spots, as from IMFs. In another case it is more uniform. The
reason for this is so far not clear. It is interesting that after a prolonged period of operation, the
emission from the region near the negative contact considerably increases, probably due to
electromigration of lanthanum toward this contact. On the whole, the LaB

6
"lm cathodes show

a good stability. Their e$ciency is an order of magnitude higher than that of clean Au IMF
cathodes, but is considerably worse than the e$ciency of the Au cathodes coated with BaO [74].

8.4. IMF cathodes with large emitting area

The emitting area of most cold cathodes (such as tip and MIM emitters, cathodes based on
p}n-junctions, etc.) ranges from small fractions of lm2 to mm2. In order to increase the area, it is
possible either to extend the emitter itself (e.g. by fabricating a larger MIM sandwich structure) or
to create emitter arrays [204}206]. Each of these ways involves some speci"c di$culties, especially
with regard to providing a su$cient uniformity of emission.

The problem of fabricating large-area IMF emitters is resolved rather easily. Recall that usually
the IMF emitters represent a structure that consists of two contacts separated by a gap
+10}20lm wide and +5}10mm long where an island "lm is formed. The emitting centers are
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Fig. 8.3. A schematic of contact electrodes of an IMF cathode (a) and a cathodoluminescent image of emission
distribution in this cathode (b).

Fig. 8.4. The current}voltage curves of conduction current I
#

and emission current I
%
for the cathode shown in Fig. 8.3.

located within a rather narrow (41 lm) region which occupies only a small part of the gap. For
this reason a mere widening of the gap cannot increase the emitting area.

There are two ways of creating large-area IMF emitters. The "rst of them is the fabrication of
a long zig-zag-shaped cathode between two comb-like electrodes inserted into each other
(Fig. 8.3a). The second possibility is to place a large number of microcathodes on one substrate, i.e.
to make a cathode matrix.

In the former case one actually has a long IMF emitter which is put into a zig-zag form to make
it compact and `two-dimensionala. To this end, one "rst deposits the comb-like electrodes on
a substrate and then the island "lm. After that the "lm is electroformed by applying a voltage about
15}20V. The distribution of the emission centers can be judged from the luminescence of the
cathode during its operation, because the centers of electron and light emission are known to
coincide (see Section 2). The luminescence "rst appears in a few points of the cathode and then, as
the voltage is increased up to 15}20V, propagates along the entire length of the gap between the
electrodes. An image of the emitting area of such a cathode obtained on a cathodoluminescent
screen is given in Fig. 8.3b. Fig. 8.4 shows the conduction and emission current}voltage curves of
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Fig. 8.5. An example of comb-like contact electrodes, prepared by photolithography, for large-area IMF cathodes. The
gap between the `teetha equals 12lm.

Fig. 8.6. The current}voltage curves of conduction current I
#

and emission current I
%

for the large-area cathode with
contact electrodes shown in Fig. 8.5. Inset: a cathodoluminescent image of emission distribution in this cathode.

a large-area IMF cathode in which the zigzag gap was prepared by scratching (using a needle) of
a gold "lm evaporated on a glass substrate.

Such cathodes can easily be fabricated in various shapes, which is convenient e.g. for purposes of
pictorial indication. The emitting regions in an electroformed IMF do not change their positions as
the cathode is exposed to the atmosphere.

The characteristics presented above related to the large-area IMF cathodes prepared on
transparent glass substrates, which are convenient for parallel observation of electron and light
emission. However, the emitting strips in these cathodes were arranged at comparatively large
distances apart (& 0.1}0.3mm). A more dense zigzag emitting structures were obtained on ceramic
(pyroceram) substrates with Mo comb-like contacts fabricated by photolithography (Fig. 8.5)
[207]. In this case the width of the gap was equal to 12lm. The current}voltage curves of such
cathodes are given in Fig. 8.6 and an example of the cathodoluminescent image of the emitting
surface is reproduced in the inset.

Let us now consider some realizations of matrix IMF emitters. They consist of many elementary
cathodes working in parallel. In an example illustrated in Fig. 8.7a and b each elementary cathode
represents an island "lm "lling a circular gap (50}60 lm wide) between two concentric electrodes
[208]. The conduction and emission current}voltage characteristics of matrix IMF cathodes are
similar to those of the zigzag cathodes (Fig. 8.4). Typically, the emission centers take up to 10}25%
of the cathode geometrical surface. Fig. 8.7c shows the emission image of a matrix cathode having

160 R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179



Fig. 8.7. (a) A schematic of a fragment of the matrix IMF cathode. (b) A micrograph of a section of such a cathode.
(c) A cathodoluminescent image of emission distribution in this cathode.

a total diameter of about 25 mm. The total emission current extracted from this cathode amounted
to 500}100lA at the e$ciency c"0.6}0.7%.

8.5. SnO
2

island xlm cathodes

A number of works have been devoted to the investigation of electron emission from SnO
2

island "lms [209}211]. In [209], SnO
2
"lms were deposited onto a polished quartz substrate using

pyrolytic dissociation of SnO
4

at 4503C. The conductivity of the "lms was controlled through the
addition of Sb and NH

4
F. The geometry of the "lms is sketched in Fig. 8.8. To obtain electron

emission, a procedure of electroforming (passing a current through the "lm) was necessary. Later
experiments with such "lms showed that in the course of the electroforming the narrow part of the
"lm was strongly heated and partially destroyed so that it "nally acquired an island structure
[211]. An important advantage of the SnO

2
"lms is the possibility of carrying out their electro-

forming in air. Typical dependences of the conduction and emission currents on the voltage applied
to the "lm are depicted in Fig. 8.8. For the conduction current, this dependence can vary from
close-to-linear to close-to-exponential, whereas for the emission current it is always close to
exponential. The ratio of the emission current to the conduction current, i.e. the cathode e$ciency
c, varies in the range from 1 to 50%. Thermionic emission from the "lm seems improbable, since the
emission current is independent of the duration of the pulses applied to the "lm in the range from
1 to 1000 ls. The authors [210,211] supposed that the main physical mechanism in such cathodes
may be "eld emission from the SnO

2
islands, although they did not exclude also that some

contribution can stem from hot electrons in the islands. The cathodes were shown to give stable
currents densities in the range from 1 to 10A/cm2 for hundreds of hours and to retain their
emission characteristics after exposure to air.

Quite recently, island cathodes based on small particles of metal oxides have been utilized in #at
information displays.
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Fig. 8.8. The current}voltage curves of conduction current I
#

and emission current I
%

for a SnO
2

island cathode. Inset:
geometry of the cathode [211].

8.6. Island xlm cathodes for yat information displays

Considerable attention has been focused in recent years on the development of #at cathodo-
luminescent displays. They possess high ergonomic characteristics in comparison with liquid
crystal and other types of displays and are expected to take the place of bulky traditional
kinescopes in many applications. Up to now, the main hopes have been pinned on arrays of "eld
emitters of various con"gurations as the most promising cathodes for such displays (see e.g.
[205,206]). However, quite recent publications of Japanese workers from Canon Research Center
have presented a #at (9.6 mm thick) cathodoluminescent display using a cathode which they name
`the surface conduction emittera [13,212,213]. The emitter was fabricated of "ne PdO particles,
and its micrographs show that the size of the particles is about 5}10 nm, so it actually is an island
"lm emitter (Fig. 8.9). To fabricate such emitters, an ink-jet printing process is carried out in air.
A movable ink-jet head generates very small droplets of a PdO `inka which are programmably
placed onto a glass plate. An elementary emitter is &10 nm thick and &100 lm in size (Fig. 8.9).
To activate the electron emission from as-deposited "lms, they are subjected to a forming
procedure in which the voltage applied to the "lm is increased until the conduction current is
almost broken irreversibly [212]. The authors suppose that this occurs due to partial melting of the
PdO "lm. The result is a lowering of the driving voltage which must be applied to the cathode to
obtain the electron emission. The ratio of the emission current to the conduction current is
typically +0.2% at the driving voltage 15V and anode voltage 1 kV. In the range of the driving
voltages from +13 to 17V, the dependences of both emission and conduction current for one of
the cathodes were found to be approximately linear when plotted in the Fowler}Nordheim
coordinates. However, as noted in Section 3, such an observation cannot be considered as
a su$cient proof of the "eld emission mechanism for these cathodes. Actually, the authors [213]
consider a model in which electrons tunnel from one particle to another and then, after multiple
elastic re#ections from its surface, travel to the anode. However, the broad electron energy
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Fig. 8.9. The conduction current I
&
and emission current I

%
as functions of the voltage applied to the "lm consisting of

ultra"ne PdO particles. Insets: (a) schematic structure of the cathode, (b) an SEM image of the PdO "lm "red after ink-jet
printing [13,212].

Fig. 8.10. A schematic of electron-optical image converter with an IMF cathode for recording and visualizing IR laser
radiation.

distribution (with a width of +2 eV) recorded in the work can hardly be explained in the
framework of this mechanism. In our opinion, the experimental results [213] are better compatible
with the model of hot electrons discussed in this review. Contrary to [213], the model of hot
electrons assumes that electrons after tunneling are not elastically re#ected from the adjacent
particle, but enter it and share their excess energy with other electrons heating them up.

The glass plate serving as a substrate for fabrication of a cathode matrix is previously coated
with two systems of parallel metal wires (`column linesa and `row linesa), which are isolated from
each other, perpendicular to each other and allow switching on of all the elementary emitters in
turn. In this way an image can be displayed on the cathodoluminescent screen placed in vacuum
parallel to the cathode matrix. The whole technology has been claimed to be quite simple,
reproducible and economical. The authors [13] have succeeded to fabricate with this cathode
a 10-in #at display which, in their words, `shows full color images as good as CRTsa.

The coming years will probably show if the island "lm cathodes can rival other types of electron
emitters in the new generation of #at information displays.

8.7. IMF cathodes for IR electron-optical converters

Island thin "lms have been used to develop a cathode for visualization and measurement of the
spatial power distribution of pulse infrared laser radiation [9,214]. The cathode represents a gold
IMF coating a dielectric substrate which is transparent to IR radiation (Fig. 8.10). The "lm consists
of two subsystems of islands: the larger ones (0.1}0.5lm) ensure an e!ective absorption of IR
radiation (see Section 7) while the nanosized islands provide the conductivity in the cathode.
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Fig. 8.11. Laser beam intensity distributions visualized by a carbon IMF (a) and a gold IMF (b). The dark strip in
(b) corresponds to a cathode section where gold islands were absent. The laser power density was P"5]105W/cm2.

The known emitters used for the visualization of IR radiation represent matrices consisting of
individual IR-sensitive elements [215]. In our case, each island is a functional analogue of the
individual element of the matrix. In the island, there occurs a conversion of the energy of incident
IR radiation into the energy of an electron gas, which results in electron emission. The spatial
power distribution in the laser beam is mirrored in the distribution of the electron emission current
density over the IMF cathode. Such an Au cathode prepared on a Si substrate has been tested with
a pulsed CO

2
laser (j"10.6lm, q"1 ls). The density of the emission current amounted to

104}105A/cm2 at the laser power density 5]104W/cm2. The cathode reproduces the shape of
nanosecond laser pulses [3].

Fig. 8.10 shows an electron-optical converter for visualization of IR radiation with the aid of an
Au IMF emitter deposited on a Si plate. The IR beam from a CO

2
laser is introduced into the

vacuum device through a Si window and is incident on the back side of the cathode. On passing the
Si plate, it excites the electron gas in the islands and induces the electron emission. The emitted
electrons are accelerated with a voltage of &1 kV toward the cathodoluminescent screen to
produce a visible image. Examples of such images are given in Fig. 8.11. It has been found that Au
IMF emitters allow the visualization and characterization of IR laser beams at power densities of
5]104 to 106 W/cm2. Utilizing a microchannel plate, it is possible to detect lower power densities
and record photographically single IR radiation pulses. The spatial resolution of the IMF
electron-optical converter is limited by the structure of the island "lm. The "lms prepared from
refractory metals have been shown to sustain high power densities and provide a good reproduci-
bility even after reception of &104 powerful laser pulses.

8.8. Tensometric sensors

The high sensitivity of the resistance of IMFs to deformation of the substrate has been known
since the 1960s [216,217]. Later on, a strong e!ect of the deformation of substrate on electron and
photon emission characteristics was also found [75,154]. It is generally agreed that the high stress
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Fig. 8.12. Schematic of an IMF tensometric sensor. 1, a steel substrate, 2, an insulating sublayer, 3, contact electrodes
and 4, an IMF.

sensitivity of IMFs is due to the tunnel mechanism of their conductivity. Thus the choice of
appropriate "lm structure is very important to fabricate tensometric sensors with good
performance.

The coe$cient of tensosensitivity cH, or piezoresistance coe$cient, is de"ned as

cH"(*R/R)/(*l/l) ,

where *R/R is the relative change of resistance and *l/l is the strain of the substrate. In the Ohmic
region of the conduction current}voltage characteristic (up to the mean "elds in the "lm of
&104}105V/cm), cH is practically independent on the applied voltage. cH is very sensitive to the
"lm structure and passes through a maximum at the mass thickness of 3}4nm which in the case of
gold IMFs corresponds to islands with an average size &10nm and the interisland spacings of
&2}3 nm [218].

An example of the design of an IMF tensometer is depicted in Fig. 8.12. The substrate was made
of a 40 lm steel foil having a small residual strain and coated with a layer of polyurethane lacquer
a few lm thick. Two contact electrodes with a 20lm gap between them were deposited onto the
lacquer coating and then an island "lm was evaporated in vacuum. To speed up the stabilization of
the "lm structure, it is recommended to evaporate the IMF onto a heated substrate. Then the
sample was exposed to air and coated with a protective dielectric "lm.

The conduction current}voltage curves of such sensors have a shape typical of the island "lms.
The working point was chosen at 1}2 V which corresponded to the Ohmic segment of the curve.
The resistance was 1}1.5M for sensors with the best sensitivity (cH"80}100 for Au "lms and
cH"10}30 for Ta, Cr, Mo and Pt "lms). The values of cH remain practically stable in time, but the
resistance of the sensors increased by 15}20% over a few years.

Similar sensors shaped as membranes were fabricated on a 10lm Lavsan substrate. They
provided a reliable measurement of an excess pressure of a few millimeters of water column. Over
5 years, their resistance increased by not more than 20%.

To obtain the IMF tensometers with a higher sensitivity, one can use the e!ect of substrate
deformation on the electron emission current [75] and light emission [154]. Such sensors were
prepared on thin mica sheets, and cH values of 250}300 were attained.
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Fig. 8.13. Schematic of an IMF-based microsource of light. 1, a substrate, 2, contact electrodes, 3, a BaO "lm (12 nm
thick), 4, a protecting SiO

x
coating, 5, an IMF.

8.9. A microsource of light

The light emission from IMFs (see Section 4) has been utilized to fabricate a miniature source of
light [219}221] (Fig. 8.13). The width of the contact electrodes on a dielectric substrate was taken
100 lm and the width of the gap between them 10 lm. An island "lm (of Au, Ag, Pt, Cu, Cr, Mo, or
Bi) with a mass thickness of 6}8 nm was evaporated into the gap. Its electroforming was carried out
in vacuum to obtain electron and light emission centers. Then all the centers save one were burnt
by applying voltage pulses with an amplitude which is about twice as high as the working voltage.
Then, to lower the working voltage, a thin layer of BaO was evaporated on the "lm and "nally the
whole structure was covered by a transparent protective SiO

2
coating. Such a point-like light

source is quick-response, economical, save and can be exploited in air. The size of the luminous
area is about 0.5 lm and its radiation power is &10~10W within the spectral range 500}780 nm.

8.10. Hot electrons beyond IMFs

At this point it seems appropriate to discuss possible manifestations of hot electrons in other
low-dimensional and dispersed systems.

First of all, it should be recalled that in many semiconductors, such as Ge, Si, InSb and others,
the electron}phonon interaction is weak enough to ensure favorable conditions for intense
generation of hot electrons in bulk materials. There is an abundant literature on this topic (see e.g.
[109,110]). Taking into account the size e!ect in the electron}phonon interaction considered
above, it can be anticipated that the conditions for nonequilibrium heating of electrons in small
semiconductor particles should be even more favorable. Hot electrons are known to play an
important part in semiconductor nanostructures [222].

The situation in metals is basically di!erent and, as noted above, hot electrons can be generated
under stationary conditions only in metal nanoparticles. In making the comparison of metals and
semiconductors, it should be remembered that the concentration of free electrons in metals is by
many orders of magnitude higher than in semiconductors. Correspondingly, various e!ects which
can be stimulated by hot electrons should be much more intense in the case of metals.

Since the physical regularities underlying the heating of electrons in small particles seem to be
rather general, e!ects similar to those observed in IMFs can be expected in other dispersed systems
fed with energy. As an example in this context, let us mention recent works on `hot-electron
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femtochemistry at surfacesa (see e.g. [223}228]). This term was coined for chemical reactions
stimulated at surfaces by hot electrons that are generated in the substrate with the aid of power-
ful femtosecond laser pulses. Alternatively, it was proposed to obtain hot electrons for this
purpose in metal}insulator}metal structures [228]. In the latter case one has a possibility to
tune the energy of hot electrons to the energy of short-lived negative ion state of adsorbed species
which is an important intermediate stage in the chemical reaction. Obviously, hot electrons
generated in small particles can manifest themselves in similar chemical reactions which occur on
dispersed surfaces such as e.g. supported catalysts. This is an example which demonstrates
that exploitation of hot electrons may appear useful in the targeted development of various
nanomaterials.

9. Conclusions

The whole body of currently available evidence on electron and photon emission phenomena in
IMFs seems to be consistent with the model which predicts a strong nonequilibrium heating of the
electron gas in nanoparticles. The size of such particles is smaller than the mean free path of
electrons in the volume, so the scattering of electrons occurs mainly at the particle surface and the
channel of electron energy losses due to generation of volume phonons is essentially cut o!.
The result is a strong reduction in the electron-lattice energy transfer, which provides a favorable
possibility for generation of hot electrons when a su$cient power is fed into the particle. This can
easily be realized by passing a current through the island "lm or by its laser irradiation. In the
former case, the energy is delivered to the emission centers through narrow percolation channels
where the current density is very high. In the latter case, the incident electromagnetic energy is
absorbed very intensively when the particle has a special shape. The comparison of the theoretical
predictions with experimental results shows that the electron emission from IMFs can be inter-
preted as Richardson emission of the hot electrons which have their own temperature di!erent
from that of the lattice. The light emission from IMFs can also have its origin in the appearance of
hot electrons. Its possible mechanisms can be the bremsstrahlung, inverse surface photoe!ect,
radiation generated by inelastic tunneling of electrons between the islands and the radiative decay
of plasma excitations. Thus, from the point of view of electronic kinetics, the metal island "lms are
more similar to semiconductors and gas plasmas, where hot electrons occur universally, than to
bulk metals where they can be generated only for very short times.

The application potential of IMFs, used so far only to a minor extent, ranges from micro-
cathodes and microsources of light to large-area cathodes which seem promising for novel
information displays. It is also appropriate to mention that hot electrons have been shown to play
an important role in stimulation of surface chemical reactions (`hot-electron femtochemistry at
surfacesa). Thus, a deep insight into mechanisms of generation of hot electrons in nanoparticles
may appear useful to better understand the known chemical behaviour and potentialities of various
dispersed systems (such as supported catalysts). Hot electrons have also an important impact in
semiconductor nanostructures.

Hopefully, advances in nanotechnologies will open new possibilities in the preparation of the
island "lms with more controllable parameters which in turn will ensure further progress in this
interesting "eld of nanoscale science.
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Appendix A

The solution of the SchroK dinger equation linearized with respect to the amplitude of the
electromagnetic wave is represented as

t(r, t)"t(0)(r)e~(*e@+)t#t(1)(r, t) , (A.1)

where the "rst term gives the solution in the absence of the wave and the second term accounts for
the contribution of the wave "eld. The function W(1)(r, t) can be found from the equation

i+
Rt(1)

Rt !G
p( 2
2m

#;(x)Ht(1)(z, t)"!

e
mc

(Ap( )t(0)(r)e~(*e@+)t . (A.2)

Taking into account the time dependence of A(t) (29), we can write

!(Ap( )t(0)(r)e~(*e@+)t"i+(A(0)$)t(0)(r)Me~(*@+)(e~+u)t#e~(*@+)(e`+u)tN . (A.3)

This relationship allows Eq. (A.1) to be represented as
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Equations for functions U(B)
i

can be obtained by substituting (A.4) into (A.2) and equating the
terms that contain the same components A(0)

i
. In particular, the equation for U(B)

i
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Consider now in more detail the case of a rectangular barrier along x having a width a
0

and
height ; (see Eq. (45)).

With this barrier, one obtains

t(0)(r)"t(0)(x)e*kyy`kzz
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(A.6)

The coe$cients R
0
, B

1
, B

2
and C

0
are determined from conditions of joining the function (A.6)

and its derivatives in the points x"0 and x"a
0
. The procedure of the joining gives a system of

algebraic equations which determine the unknown coe$cients:
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Considering the structure of function (A.6), the dependence of U
x
(r) on the variables y and z can

be separated into an isolated factor:

U
x
(r)"u(x)e*(kyy`kzz) . (A.8)

The substitution of (A.8) into Eq. (A.5) gives
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It can be easily checked by immediate substitution into (A.9) that its solution can be represented
as

u(x)"$

+
2mu

Rt(0)(x)
Rx #u(B)(x) . (A.10)
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Here the shape of uB(x) is given by formula (46). The "rst term in (A.10) is a partial solution of the
nonuniform system of equations (A.9) and uB(x) gives a solution of the uniform system.

The conditions of joining the function (A.10) and its derivative in the points x"0 and x"a
0

give a system of algebraic equations which determine the coe$cients d, f
1
, f

2
, and g:
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The probability of inelastic tunneling is determined by the coe$cient g and that of the inelastic
re#ection from the barrier by the coe$cient d.

Let us illustrate this statement for the case of tunneling. As can be seen from Eqs. (A.1), (A.4),
(A.6),(A.8) and (A.10), the electron wave function at xPR is given by

t(r, t)"C
0
e`*kx e*(kyy`kzz)e~(*e@+)t#iA

2e
c+

A(0)
x BGA$

+
2muBC0

ik
x
e*kxx#ge*qxH

]e*(kyy`kzz)e~(*@+)(eB+u)t . (A.12)

f It should be recalled that the summands U(B)
y

(r) and U(B)
z

(r) do not contribute to the inelastic
current if the dispersion of the electromagnetic wave is not considered. By substitution of
function (A.12) into expression (41) for the current I
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The cross-contribution of the "rst and second terms in (A.12) to the current vanishes when
averaged over the wave period. The "rst summand in (A.13) determines the probability of the
elastic tunneling. In the braces, the "rst term accounts for the probability of the inelastic tunneling
while the second one gives a correction to the probability of the elastic tunneling due to the
presence of the wave "eld.

The intelastically re#ected current can be calculated similarly to (A.13). In this case, DdD2 appears
instead of DgD2 in the expression for the current. The coe$cients g and d are found from (A.11) with
allowance for (A.7). The expression for DgD2 is given by (48). For DdD2, we obtain
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The calculation method presented above can easily be generalized for the case of an asymmetric
barrier.
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Appendix B

As suggested in Section 7, the mutual e!ect of metal islands on the local "eld strength in a given
island can be formally accounted for by replacing the depolarization factor ¸

j
with ¸

j
!*¸

j
.

Below, we will "nd the explicit form of *¸
j

for a particular model.
It should be noted that the problem of the exact determination of the local "eld presents

considerable di$culties even in the simplest case of two identical spherical particles (see e.g.
[229,230]). Usually, an approximation is applied in which the electrostatic potential induced by an
island is expanded as a power series in multipoles. As a rule one restricts the consideration to the
lowest multipoles (most often, the dipoles). Such an approximation is not very appropriate for an
island "lm in which the distance between the islands is of the same order as their size. In what
follows we describe a method of the calculation of the local "eld which does not apply the multipole
expansion [231].

Consider a linear periodic chain consisting of identical metal islands. The mutual e!ect of the
islands on each other will be maximum when the external electric "eld E is parallel to the chain
axis. We assume just such an orientation of the "eld. Since both the size of the islands and spacings
between them are in our case much smaller than the length of the incident wave, the problem of the
determination of the resulting "eld reduces to the solution of the Laplace equation with appropri-
ate boundary conditions:

*u
%
(r)"0 ,

u(`)
%

(r)D
4
"u(~)

%
(r)D

4
,

eA
Ru(`)

%
Rn BK

4

"A
Ru(~)

%
Rn BK

4

.

(B.1)

The signs (#) and (!) correspond here to the limiting values of the function u
%

inside and
outside the surface S, respectively, and n is the outward normal to it. The dielectric susceptibility of
the medium is taken equal to 1, and that of the islands to e.

The solution of Eq. (B.1) can be represented as

u
%
(r)"!Er#

=
+

k/~=
P

ds o
4
(r)

Dr!r@!akD
. (B.2)

Here o
4
(r) is the surface charge density which, with the account for the assumed periodicity of the

chain, obeys the following integral equation [232]:

o
4
(r)#

1!e
1#ePdso

4
(r)

=
+

k/~=

cos h
k

2pDr!r@!akD2
"!

1
2p

1!e
1#e

En . (B.3)

h
k

is the angle between the vectors r!r@!ak and n
r{
, where n

r{
is the outward normal to the

surface in the point r@ and a is a vector connecting the centers of two adjacent islands. The direction
of the vector a to one or another side along the chain plays no role, since the summation is carried
out over all k's.
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Eq. (B.3) has an exact solution for the case of a sungle island, i.e. for k"0 (or aPR):

o
4
"

3
4p

e!1
e#2

En . (B.4)

The substitution of (B.4) into (B.2) with retaining only k"0 gives the known result for
a dielectric sphere in a uniform external electric "eld. It will be recalled once again that
at frequencies much lower than the plasma frequency, a conducting metal island behaves as a
dielectric.

In a linear chain of identical spherical islands, the surface charge density o
4
(r) depends only on

the angle h between the "eld E and the radius vector r in the point on the sphere surface. Therefore
o
4

can be expanded in the general case into a series

o
4
"

=
+

m/1

C
m
P

m
(cos h) . (B.5)

As it is clear from the symmetry considerations, Eq. (B.5) contains only odd Legendre's poly-
nomials. By substitution of (B.5) into (B.3), multiplying the result by P

n
(cos h) sin h and then by

integration over all h's, one obtains a system of algebraic equations which determine the unknown
coe$cients C

m
:

=
+

m/1
G

4
(2m#1)(2n#1)

(n#m)!
n!m! A

R
a B

n`m`1 =
+
k/1

1
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#

1
n(2n#1)CA

1#e
1!eB#

1
2n#1DCn

"!

E
6p

d
1,n

. (B.6)

Here R is the island radius; besides, the indices m and n pass over odd numbers only. The sums
over k's in (B.6) converge rapidly to unity. For example, +=

k/1
1/k3+1.2; +=

k/1
1/k5+1.04.

It can be easily found from Eq. (B.6) that when a"3R, i.e. when the gap between the islands
equals the island radius, the coe$cient C

3
and all the subsequent ones are much smaller than C

1
.

The value of C
3

can be comparable to that of C
1

only in the case if the islands almost touch
each other.

For a known charge distribution, the electrostatic potential can be found with the aid of
Eq. (B.2). However, our problem is substantially simpli"ed by the circumstance that it is su$cient
to determine only the component of the local "eld inside the island normal to its surface. If the
surface charge density is known, this component of the local "elds is easily calculated from the
boundary conditions:

(E
*
!E

L0#
)n

r
"4po

4
(r) ,

E
*
n
r
"eE

L0#
n
r

.
(B.7)

Here E
*
is the "eld at the outward side of the island. It follows from (B.7) that

E
L0#

n
r
"4po

4
/(e!1) . (B.8)
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The normal component of the local "eld will have its maximum value, equal to the full local "eld,
when its direction coincides with that of the external "eld. It is just in this direction that the surface
charge density induced by the "eld is maximum. This direction corresponds to h"0 in expansion
(B.5). In such a case

o
4
Dh/0

"+C
m

. (B.9)

By orienting n
3

in Eq. (B.8) along the external "eld (i.e. taking h"0), we obtain

E
L0#

"

4p
e!1

o
4
Dh/0

"

4p
e!1

=
+

m/1

C
m

. (B.10)

As noted above, the coe$cient C
1

is much larger than C
3

and all the following coe$cients even
in the case when the gap between the adjacent islands is equal to the island radius. At larger gaps
this tendency is all the more pronounced. Thus, one may retain in sum (B.10) only the coe$cient
C

1
which is determined by Eq. (B.6). As a result. one obtains from Eq. (B.10) the local "eld inside

a metal island comprising a part of the periodic linear chain of identical islands:

E
L0#

"EG1#(e!1)C
1
3
!

4
3A

R
a B

3 =
+
k/1

1
k3DH

~1
. (B.11)

As the local "eld E
-0#

is rewritten in a standard shape

E
L0#

"EM1#(e!1)[¸"*¸]N~1 , (B.12)

its comparison with (B.11) gives ¸"1/3 for a spherical island. The parameter D¸ for this situation
is

*¸+4
3
(R/a)3 . (B.13)

In a similar way one can consider a periodic chain of ellipsoidal islands. Suppose the islands are
identical ellipsoids of revolution with their major axes oriented along the chain. Taking into
account the explicit form of the right-hand side of (B.3), it is convenient to present the charge
distribution over the ellipsoid surface as

o
4
"

(R
M
R
,
)1@2

(R2
M
cos2 h#R2

,
sin2 h)1@2

=
+

m/1

C
m
P

m
(cos h) . (B.14)

Here h is the angle between the radius vector to a point at the surface and the major axis of the
ellipsoid which coincides with the direction of the external "elds; R

,
and R

M
are the major and

minor semiaxes of the ellipsoid. The coe$cients C
m

can also be found from a system of algebraic
equations, similar to (B.6), which can be obtained in the same way as described above.

In the same approximation as that applied to derive Eq. (B.11), we "nd for the chain of ellipsoidal
particles:

E
L0#

"EG1#(e!1)C¸,!
4
3
(1!e2

p
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R
,
a B
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+
k/1

1
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where ¸
,

is the depolarization factor, determined by formula (147), and e2
p
"1!R2

M
/R2

,
. The

value a stands as before for the distance between the centers of the islands. For *¸
,

we obtain the
following expression from (B.15):

*¸
,
+4

3
(1!e2

p
)(R

,
/a)3 . (B.16)

If the gaps between the islands are very small, the values of the local "elds can easily be
determined more exactly by using (B.10) and retaining not only C

1
, but also C

3
(and possibly C

5
).

References

[1] P.G. Borziak, O.G. Sarbej, R.D. Fedorovich, Phys. Stat. Sol. 8 (1965) 55. ***
[2] L.I. Andreeva, A.A. Benditsky, L.V. Viduta, A.B. Granovskii, Yu.A. Kulyupin, M.A. Makedontsev, G.I. Rukman,

B.M. Stepanov, R.D. Fedorovich, M.A. Shoitov, A.I. Yuzhin, Fizika Tverdogo Tela 26 (1984) 1519 (in Russian).
[3] A.A. Benditskii, L.V. Veduta, Yu.A. Kulyupin, A.P. Ostranitsa, P.M. Tomchuk, R.D. Fedorovich, V.A. Yakovlev,

Izvestiya Akademii Nauk SSSR, Ser. Fiz. 50 (1986) 1634 (in Russian).
[4] A.A. Benditskii, L.V. Veduta, V.I. Konov, S.M. Pimenov, A.M. Prokhorov, P.M. Tomchuk, R.D. Fedorovich,

N.I. Chapliev, V.A. Yakovlev, Poverkhnost Fiz. Khim. Mekh. No. 10 (1988) 48 (in Russian). ***
[5] D.A. Ganichev, V.S. Dokuchaev, S.A. Fridrikhov, Pisma v ZhTF 8 (1975) 386 (in Russian).
[6] P.G. Borziak, Yu.A. Kulyupin, Elektronnye Processy v Ostrovkovykh Metallicheskikh Plenkakh (Electron

Processes in Island Metal Films), Naukova Dumka, Kiev, 1980 (in Russian). ***
[7] S.A. Nepijko, Fizicheskiye Svoistva Malykh Metallicheskikh Chastits (Physical Properties of Small Metal

Particles), Naukova Dumka, Kiev, 1985 (in Russian). **
[8] H. Pagnia, N. Sotnik, Phys. Stat. Sol. (a) 108 (1988) 11. **
[9] R.D. Fedorovich, A.G. Naumovets, P.M. Tomchuk, Prog. Surf. Sci. 42 (1993) 189. *

[10] L.I. Maissel, R. Gland (Eds.), Handbook of Thin Film Technology, McGraw-Hill, New York, 1970.
[11] L.I. Maissel, in: Physics of Thin Films, Vol. 3, Academic Press, New York, 1966, p. 61.
[12] K.R. Lawless, in: G. Hass, R. Thun (Eds.), Physics of Thin Films, Vol. 4, Academic Press, New York, 1967.
[13] E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada,

H. Yamamoto, T. Nakagiri, J. Soc. Inform. Display 5 (1997) 345. **
[14] E. Bauer, H. Poppa, Thin Sol. Films 12 (1972) 167. **
[15] K.L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.
[16] V.M. Ievlev, L.I. Trusov, V.A. Kholmiansky, Strukturnye prevraschenia v tonkikh plenkakh (Structure Trans-

formations in Thin Films), Metallurgia, Moscow, 1982 (in Russian).
[17] L.I. Trusov, V.A. Kholmiansky, Ostrovkovye metallicheskiye plenki (Island Metal Films), Metallurgia, Moscow,

1973 (in Russian). *
[18] A. Barna, P. Barna, J. Pocza, Vacuum 17 (1967) 219.
[19] G. Honjo, K. Takeyanagi, K. Yagi, K. Kobayashi, Jpn. J. Appl. Phys. 2 (1974) 539.
[20] S.A. Nepijko, Mikroelektronika 5 (1976) 86 (in Russian).
[21] A. Barna, P. Barna, R. Fedorovich, H. Sugawara, D. Radnoczi, Thin Solid Films 36 (1976) 75.
[22] D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petro!, Appl. Phys. Lett. 63 (1993) 3203.
[23] J.M. Moison, F. Houzay, F. Barthe, L. Leprince, F. Andre, O. Vatel, Appl. Phys. Lett. 64 (1994) 196.
[24] P. Tognini, L.C. Andreani, M. Geddo, A. Stella, P. Cheyssac, R. Kofman, A. Miglori, Phys. Rev. B 53 (1996) 6992. *
[25] R. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. George, G. Comsa, Phys. Rev. Lett. 67 (1991) 855. **
[26] E. Sondergard, R. Kofman, P. Cheyssac, A. Stella, Surf. Sci. 364 (1996) 467.
[27] M. Zinke-Allmang, in: M. Tringides (Eds.), Surface Di!usion: Atomistic and Collective Processes, Plenum Press,

New York, 1997, p. 389. *
[28] G.R. Carlow, R.J. Barel, M. Zinke-Allmang, Phys. Rev. B 56 (1997) 12519.
[29] G. Rosenfeld, M. Esser, K. Morgenstern, G. Comsa, Mat. Res. Soc. Symp. Proc. 528 (1998) 111.
[30] G. Rosenfeld, K. Morgenstern, I. Beckmann, W. Wulfhekel, E. Laegsgaard, F. Besenbacher, G. Comsa, Surf. Sci.

401 (1998) 402}404.

174 R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179



[31] L. Haderbache, R. Garrigos, R. Kofman, E. Sondergard, P. Cheyssac, Surf. Sci. 411 (1998) L748. **
[32] G.R. Carlow, D.D. Petrovic, M. Zinke-Allmang, Appl. Surf. Sci. 704 (1998) 130}132.
[33] K.-H. Park, J.S. Ha, W.S. Yun, E.-H. Lee, Surf. Sci. 415 (1998) 320.
[34] V.I. Marchenko, A.Ya. Parshin, Sov. Phys. JETP 54 (1980) 129. **
[35] D. Andelman, F. Brochard, P.-G. De Gennes, J.-F. Joanny, Compt. Rend. Acad. Sci. Paris 301 (1985) 675. **
[36] J. Villain, A. Pimpinelli, Physique de la Croissance Cristalline, Eyrolles, Paris, 1995 (Chapter 15). **
[37] B.V. Alekseenko, R.D. Fedorovich, in: Ultradispersnye chastitsy i ikh ansambli (Ultradispersed Particles and

Their Ensembles), Naukova Dumka, Kiev, 1982, p. 97 (in Russian).
[38] A. Blech, A. Sello, L. Gregor, in: Tekhnologia tonkikh plionok (Thin Film Technology), Sovetskoye Radio,

Moscow, 1977 (in Russian).
[39] B.V. Alekseenko, P.M. Tomchuk, R.D. Fedorovich, Poverhnost, Fiz. Khim. Mekh. (USSR), 10 (1988) 42 (in

Russian).
[40] S.K. Dey, G.D. Dick, J. Vac. Sci. Technol. 11 (1974) 97.
[41] B.V. Alekseenko, R.D. Fedorovich, Thin Sol. Films 92 (1982) 252. *
[42] G.I. Distler, V.P. Vlasov, Yu.M. Gerasimov, Dekorirovanie Poverkhnosti Tverdykh Tel (Decoration of Solid

Surfaces), Nauka, Moscow, 1976 (in Russian).
[43] P.G. Borziak, Yu.A. Kulyupin, O.G. Sarbej, R.D. Fedorovich, Ukrain. Fiz. Zh. 14 (1969) 395.
[44] A.F. Bardamid, Yu.A. Kulyupin, K.N. Pilipchak, A.I. Shaldervan, Dispergirovannye Metallicheskiye Plenki

(Dispersed Metal Films), Institute of Physics, Kiev, 1972 (in Russian).
[45] B.V. Alekseenko, R.D. Fedorovich, P.M. Tomchuk, Material Sci. 13 (3}4) (1987) 161. **
[46] F.M. d'Heurle, P.S. Ho, in: J.M. Poate, K.N. Tu, J.W. Mayer (Eds.), Thin Films Interdi!usion and Reactions,

Wiley, New York, 1978, p. 243.
[47] P.S. Ho, T. Kwok, Rep. Prog. Phys. 52 (1989) 301. *
[48] A. Scorzoni, B. Neri, C. Caprile, F. Fantini, Mater. Sci. Rep. 7 (1991) 143.
[49] D.W. Malone, R.E. Hummel, Crit. Rev. Solid State Mater. Sci. 22 (1997) 199.
[50] M. Aguilar, A.I. Oliva, P. Quintana, Surf. Sci. 409 (1998) 501.
[51] H. Yasunaga, A. Natori, Surf. Sci. Rep. 15 (1992) 205.
[52] A.S. Sukharier, S.V. Zagrebneva, I.A. Sidorova, in: Dispergirovannye Metallicheskiye Plenki (Dispersed Metal

Films), Institut Fiziki AN Ukr SSR, Kiev, 1972, p. 308 (in Russian).
[53] R.D. Fedorovich, O.E. Kiyayev, A.G. Naumovets, A.P. Ostranitsa, Abstracts of 3 International workshop on

Electronic properties of metal/non metal microsystems, Kleinheubach, Germany, 1991, p. 81.
[54] B. Licznerski, A. Seweryn, Int. J. Electron. 73 (1992) 919.
[55] A.K. Ray, C.A. Hogarth, J. Electron. 57 (1984) 1. **
[56] J.E. Morris, in: B.W. Licznerski, A. Dziedzic (Eds.), Metal/Nonmetal Microsystem: Physics, Technology, and

Applications, Proc. SPIE 2780, 1996, p. 64.
[57] R.M. Hill, Proc. Roy. Soc. A 309 (1969) 377. *
[58] J.E. Morris, T.J. Coutts, Thin Sol. Films 47 (1977) 1.
[59] N. Mostovetch, B. Vodar, in: Poluprovodnikovye Materialy (semiconductor materials), Izd. Inostr. Lit., Moscow,

1954, p. 338 (in Russian).
[60] C.A. Neugebauer, M.B. Webb, J. Appl. Phys. 33 (1962) 74. *
[61] M.N. Nifonto!, Compt. Rend. Acad. Sci. 237 (1963) 24.
[62] D.S. Herman, T.N. Rhodin, J. Appl. Phys. 37 (1966) 1594.
[63] T.E. Hartman, J. Appl. Phys. 34 (1963) 943.
[64] P.M. Tomchuk, R.D. Fedorovich, Fiz. Tverd. Tela 8 (1966) 3131; Sov. Phys. Solid State 8 (1966) 2510. ***
[65] M.N. Nifonto!, Compt. Rend. Acad. Sci. 236 (1953) 1538.
[66] R. Hrach, Int. J. Electronics 73 (1992) 1085.
[67] L. Eckertova, Phys. Stat. Sol. 18 (1966) 3. *
[68] A.A. Milgram, Chin-Shun Lu, J. Appl. Phys. 37 (1966) 4773.
[69] P.G. Borziak, D.B. Danko, R.D. Fedorovich, O.E. Kiyayev, A.G. Naumovets, Prog. Surf. Sci. 53 (1996) 171. **
[70] P.M. Tomchuk, R.D. Fedorovich, Fiz. Tverd. Tela 8 (1966) 276; Sov. Phys. Solid State 8 (1966) 226. ***
[71] W. Chen, H. Ahmed, J. Vac. Sci. Technol. B13 (1995) 2883.

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 175



[72] P.G. Borziak, O.E. Kiyayev, A.G. Naumovets, R.D. Fedorovich, Ukr. Fiz. Zhurn. 43 (1998) 1487 (in Ukrainian).
[73] G. Dittmer, Thin Sol. Films 9 (1972) 317.
[74] A.S. Sukharier, S.V. Zagrebneva, N.N. Ivanov, L.N. Timonina, Izv. Akad. Nauk SSSR, Ser. Fiz. 38 (1974) 302

(in Russian).
[75] Yu.A. Kulyupin, S.A. Nepijko, Fiz. Tverdogo Tela 17 (1975) 2747 (in Russian).
[76] Yu.A. Kulyupin, S.A. Nepijko, R.D. Fedorovich, Radiotekhnika i Elektronika, 20 (1975) 1898 (in Russian).
[77] Yu.A. Kulyupin, S.A. Nepijko, N.N. Sedov, V.G. Shamonia, Optik 52 (1978/79) 101.
[78] H. Pagnia, N. Sotnik, W. Wirth, Int. J. Electron. 69 (1990) 25.
[79] H. Araki, T. Hanawa, Vacuum 38 (1988) 31.
[80] Yu.A. Kulyupin, R.D. Fedorovich, A.S. Sukharier, in: M.I. Elinson (Ed.), Nenakalivaemye Katody (Nonheated

Cathodes), Sovietskoye Radio, Moscow, 1974, p. 9 (in Russian).
[81] V.G. Dyukov, A.V. Emelyanov, N.N. Sedov, M.I. Kolomeytsev, Izvestiya Akad. Nauk SSSR, Ser. Fiz. 41 (1977)

891 (in Russian).
[82] Yu.A. Kulyupin, S.A. Nepijko, V.I. Styopkin, Izv. Akad. Nauk USSR, Ser. Fiz. 46 (1982) 2354 (in Russian). *
[83] P.G. Borziak, Yu.A. Kulyupin, S.A. Nepijko, Thin Solid Films 36 (1976) 235.
[84] P.G. Borziak, Yu.A. Kulyupin, S.A. Nepijko, V.G. Shamonya, Thin Solid Films 76 (1981) 359.
[85] L.V. Viduta, Yu.A. Kulyupin, Radiotekhnika i Elektronika 24 (1979) 823 (in Russian).
[86] Yu.A. Kulyupin, R.D. Fedorovich, Fiz. Tverdogo Tela 14 (1972) 3105 (in Russian).
[87] E.V. Klimenko, A.G. Naumovets, Sov. Phys. Sol. State 13 (1971) 25.
[88] A.G. Naumovets, Yu.S. Vedula, Surf. Sci. Rep. 4 (1985) 365. *
[89] A.S. Sukharier, S.V. Zagrebneva, V.M. Suchilin, V.M. Trusakov, Elektr. Tekhn., Ser. 5(2) (1969) 10 (in Russian).
[90] B.V. Alekseenko, R.D. Fedorovich, Structura i "zicheskije svojstva tonkikh plenok (Structure and Physical

Properties of Thin Films), Uzhgorodskii universitet, Uzhgorod, 1977/78, p. 78 (in Russian).
[91] G.S. Kreynina, Soviet Phys. Radioengng. and Electron. 7 (1962) 1949.
[92] G. Dearnaley, A. Stoneham, D. Morgan, Rep. Progr. Phys. 33 (1970) 1129. *
[93] I. Emmer, Thin Solid Films 20 (1974) 43.
[94] H. Biderman, J. Plasek, Thin Solid Films 47 (1977) 3.
[95] H. Biderman, Vacuum 26 (1976) 513.
[96] M. Bischo!, H. Pagnia, Thin Sol. Films 29 (1975) 303. **
[97] B. Alekseenko, R. Fedorovich, Ukr. Fiz. Zhurn. 30 (1985) 1559 (in Russian).
[98] J.G. Simmons, J. Appl. Phys. 35 (1964) 2472. *
[99] B. Alekseenko, P. Tomchuk, R. Fedorovich, Izv. Akad. Nauk SSSR, ser. "z. 50 (1986) 1601 (in Russian).

[100] A.P. Komar, A.A. Komar, Zhur. Tekhn. Fiz. 31 (1961) 231 (in Russian). *
[101] A.P. Komar, V.P. Savchenko, Fiz. Tverd. Tela 7 (1965) 759 (in Russian).
[102] I. Giaver, Surf. Sci. 29 (1972) 1.
[103] A.E. Owen, P.G. Le Comber, J. Hajto, M.J. Rose, A.J. Snell, Int. J. Electronics 73 (1992) 897.
[104] R. Blessing, H. Pagnia, Phys. Stat. Sol. B 110 (1982) 537. *
[105] M. Bischo!, H. Pagnia, J. Trickl, Int. J. Electron. 72 (1992) 1009.
[106] M. Bischo!, V. Olt, H. Pagnia, Thin Sol. Films 165 (1988) 49.
[107] M. Bischo!, Int. J. Electron. 70 (1991) 491.
[108] M. Borbous, H. Pagnia, N. Sotnik, Thin Solid Films 151 (1987) 333.
[109] E.M. Conwell, High Field Transport, Academic Press, New York, 1967. *
[110] V. Denis, Yu. Pozhela, Goryachie Elektrony (Hot Electrons), Mintis, Vilnius, 1971. *
[111] P.G. Borziak, O.G. Sarbej, R.D. Fedorovich, Fiz. Tverdogo Tela 6 (1964) 2249.
[112] M.S. Brodyn, V.N. Bykov, D.B. Danko, R.D. Fedorovich, A.A. Kipen, G.A. Naumovets, N.I. Yanushevskii,

in: B.W. Licznerski, A. Dziedzic (Eds.), Metal/Nonmetal Microsystem: Physics, Technology, and Applications,
Proc. SPIE 2780, 1996, 324.

[113] M.S. Brodyn, V.N. Bykov, D.B. Danko, R.D. Fedorovich, A.A. Kipen, G.A. Naumovets, N.I. Yanushevskii,
Proc. MRS 405 (1996) 150.

[114] M.S. Brodyn, V.N. Bykov, D.B. Danko, R.D. Fedorovich, A.A. Kipen, G.A. Naumovets, N.I. Yanushevskii,
Ukr. Fiz. Zhurn. 40 (1995) 933 (in Ukrainian).

176 R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179



[115] E.C. Boswell, M. Huang, G.D.W. Smith, P.R. Wilshaw, 8th Int. Vac. Microelectr. Conf. Technical Digest, EDS a.
IEEE, Portland, OR, 1995, p. 37.

[116] J.R. Jessing, D.L. Parker, M.N. Weichold, 8th Inter. Vac. Microelectr. Conf. Technical Digest, IEEE, Portland,
OR 1995, p. 32.

[117] Ph. Dumas, M. Gu, C. Syrykh, A. Hallimaoni, F. Salvan, J.K. Gimzewski, R.R. Schlittler, J. Vac. Sci. Technol. B 12
(1994) 2064.

[118] R.D. Fedorovich, A.G. Naumovets, A.P. Ostranitsa, P.M. Tomchuk, Int. J. Electron. 69 (1990) 179. **
[119] S.I. Anisimov, V.A. Benderskij, D. Farkash, Uspekhi Fiz. Nauk 122 (1977) 185 (in Russian).
[120] R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, Phys. Rev. Lett. 58 (1987) 1680.
[121] L.V. Viduta, O.E. Kiyayev, A.G. Naumovets, A.P. Ostranitsa, R.D. Fedorovich, Radiotekhnika i Elektronika 36

(1991) 1345 (in Russian); Sov. J. Common. Technol. Electron. 37 (1992) 98. *
[122] P.M. Tomchuk, Ukrain. Fiz. Zh. 24 (1979) 182 (in Russian). **
[123] S.A. Nepijko, S.A. Gorban, L.V. Viduta, R.D. Fedorovich, Int. J. Electron. 73 (1992) 1011.
[124] D.B. Danko, R.D. Fedorovich, A.V. Gaidar, V.N. Poroshin, Int. J. Electron. 73 (1992) 1005.
[125] A.A. Benditsky, L.V. Viduta, R.D. Fedorovich, V.A. Yakovlev, Abstracts of 12th All-Union Conference on

High-Speed Photography, Photonics and Electronics of Fast Processes, Moscow, 1985, p. 196 (in Russian).
[126] E.D. Belotskii, P.M. Tomchuk, Surf. Sci. 239 (1990) 143. ***
[127] Yu.A. Kulyupin, K.N. Pilipchak, Phys. Stat. Sol. (a) 11 (1972) K15.
[128] T.-L. Hwang, S.E. Schwarz, R.K. Jain, Phys. Rev. Lett. 36 (1976) 379.
[129] J. Lambe, S.L. Mc Carthy, Phys. Rev. Lett. 37 (1976) 923.
[130] A. Adams, P.K. Hansma, Phys. Rev. B 23 (1981) 3597.
[131] E.M. Belenov, I.N. Kompanets, A.A. Krakhotkin, A.V. Lezhnev, I.A. Poluektov, Yu.M. Popov, S.I. Sagitov, E.M.

Soboleva, A.V. Uskov, V.G. Tsukanov, Kvantovaya Elektronika 10 (1983) 729 (in Russian).
[132] J.R. Kirtley, T.N. Theis, J.C. Tang, D.J. Di Maria, Phys. Rev. B 27 (1983) 4601.
[133] P. Dawson, D.G. Walmsley, H. Quinn, A.J.L. Ferguson, Phys. Rev. B 30 (1984) 3164.
[134] R. Hrach, Thin Solid Films 15 (1973) 65.
[135] C. Barriac, P. Pinard, F. Davoine, Phys. Stat. Sol. 34 (1969) 621.
[136] R. Berndt, J.K. Gimzewski, P. Johansson, Phys. Rev. Lett. 67 (1991) 3796.
[137] R. Berndt, J.K. Gimzewski, Surf. Sci. 269/270 (1992) 556. *
[138] R. Berndt, A. Barato!, J.K. Gimzewski, in: R.J. Behm, N. Garcia, H. Rohrer (Eds.), Scanning Tunneling

Microscopy and Related Methods, NATO ASI Series E, vol. 184, Kluwer, Dordrecht, 1990, p. 269.
[139] J.H. Coombs, J.K. Gimzewski, B. Reihl, J.K. Sass, R.R. Schlitter, J. Microscopy 152 (1988) 325.
[140] R. Berndt, J.K. Gimzewski, R.R. Schlitter, Ultramicroscopy 42/44 (1992) 355.
[141] N. Venkateswaran, K. Sattler, J. Xhie, M. Ge, Surf. Sci. 274 (1992) 199. *
[142] T. Shimitsu, K. Kobayashi, M. Tsukada, Appl. Surf. Sci. 60/61 (1992) 454.
[143] A.W. McKinnon, M.E. Welland, T.M.H. Wong, J.K. Gimzewski, Phys. Rev. B48 (1993) 15250.
[144] R. Berndt, J.K. Gimzewski, Ann. Phys. 2 (1993) 133.
[145] R. Berndt, J.K. Gimzewski, P. Johansson, Phys. Rev. Lett. 71 (1993) 3493.
[146] R. Berndt, R. Gaisch, W.D. Schneider, J.K. Gimzewski, B. Reihl, R.R. Schlitter, M. Tschudy, Surf. Sci. 307}309

(1994) 1033.
[147] M.M.J. Bischo!, M.C.M.M. van der Wielen, H. Van Kempen, Surf. Sci. 400 (1998) 127.
[148] P. Borziak, I. Zapesochnyi, I. Konovalov, K. Pilipchak, Dispergirovanye Metallicheskiye Plenki (Dispersed Metal

Films), Inst. Probl. Mater. AN Ukr. SSR, Kiev, 1976, p. 107 (in Russian).
[149] P. Borziak, I. Konovalov, Yu. Kulyupin, K. Pilipchak, Thin Solid Films 35 (1976) L9.
[150] M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, Chem. Phys. Lett. 291 (1998) 425.
[151] P. Borziak, Yu. Kulyupin, Ukr. Fiz. Zhurn. 24 (1979) 214 (in Russian).
[152] S. Nepijko, R. Fedorovich, L. Viduta, D. Ievlev, W. Schulze, Ann. Physik, to be published.
[153] S. Nepijko, D. Ievlev, W. Schulze, Appl. Phys. A, submitted.
[154] S. Nepijko, W. Schulze, I. Rabin, L. Viduta, Ann. der Physik 7 (1998) 101.
[155] K.P. Charle, F. Frank, W. Schulze, Ber. Bunsenges. Phys. Chem. 88 (1984) 350.
[156] O.E. Kiyayev, A.G. Naumovets, B.V. Stetsenko, R.D. Fedorovich, Abstracts of Int. Conf. on Emission Electronics,

New Methods and Technologies, Tashkent, 1997, p. 94 (in Russian).
[157] H.K. Henisch, Electroluminescence, Pergamon, Oxford, 1962. *

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 177



[158] I.K. Vereshchagin, Elektroluminescenciya Kristallov (Electroluminescence of Crystals), Nauka, Moscow, 1974
(in Russian). *

[159] Y.A. Ono, Electroluminescent Displays, World Scienti"c, Singapore, 1995. *
[160] S.I. Anisimov, Y.A. Imas, G.S. Romanov, Y.V. Chodyko, Powerful Radiation E!ect on Metals, Nauka, Moscow,

1970, p. 272.
[161] B.B. Agrant, A.A. Benditskii, G.M. Gandelman, Sov. Phys. JETP 52 (1980) 27.
[162] Yu.K. Danileiko, A.A. Manenkov, V.S. Nechitailo, V.J. Khaimov-Malkov, Trudy FIAN SSSR (Proceedings of

Physical Institute Acad. Sci. USSR) 101 (1998) 75 (in Russian).
[163] M.J. Buckingham, Proc. Phys. Soc. 66 (1953) 601. **
[164] V.I. Kaganov, I.M. Lifshits, L.V. Tanatarov, Sov. Phys. JETP 4 (1957) 173. **
[165] Yu.I. Petrov, Fizika Malykh Chastits (The Physics of Small Particles), Nauka, Moscow, 1982 (in Russian). **
[166] A.O. Govorov, W.R. Frank, S.A. Studenikin, Fizika Tverdogo Tela 40 (1998) 542 (in Russian).
[167] P.M. Tomchuk, in: Dispergirovanye Metallicheskiye Plenki (Dispersed Metal Films), Inst. Fiziki AN Ukr. SSR,

Kiev, 1972, p. 238 (in Russian). *
[168] A.D. Davydov, Quantum Mechanics, Nauka, Moscow, 1968 [English Translation, Pergamon, Oxford, 1980].
[169] E.D. Belotskii, P.M. Tomchuk, Int. J. Electron. 73 (1992) 955.
[170] A. Kawabata, R. Kubo, J. Phys. Soc. Japan 21 (1966) 1765. ***
[171] A. Bohr, B.R. Mottelson, Nuclear Structure, Benjamin, New York, 1969.
[172] S.A. Gorban, S.A. Nepijko, P.M. Tomchuk, Int. J. Electron. 70 (1991) 485.
[173] R.D. Averitt, S.L. Westcott, N.J. Halas, Phys. Rev. B 58 (1998) 203. **
[174] E.A. Manykin, P.P. Poluektov, Yu.G. Rubezhnyi, Zh. Eksp. Teor. Fiz. 70 (1976) 2117; Sov. Phys. JETP 43 (1976)

1105.
[175] C.F. Bohren, D.R. Hu!man, Absorption and Scattering of Light by Small Metal Particles, Wiley, New York,

1983. *
[176] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995. *
[177] P.M. Tomchuk, Surf. Sci. 330 (1995) 350. **
[178] P.M. Tomchuk, B.P. Tomchuk, JETP 85 (1997) 360. ***
[179] R. Ruppin, H. Yaton, Phys. Stat. Sol. B 74 (1976) 647.
[180] D.M. Wood, N.W. Ashcroft, Phys. Rev. B 25 (1982) 6255. ***
[181] P.M. Tomchuk, Ukr. Fiz. Zhurn. 38 (1993) 1174 (in Ukainian).
[182] K. Uchida, S. Kaneco, S. Omi, C. Hata, H. Tanji, Y. Asahara, I. Ikushima, T. Tokizaki, A. Nakamura, J. Opt. Soc.

Am. B 11 (1994) 7.
[183] P.K. Shukla, D.I. Mendis, T. Desai (Eds.), Advances in Dusty Plasmas, World Scienti"c, Singapore, 1997.
[184] B.M. Smirnov, Uspekhi Fiz. Nauk 167 (1997) 11.
[185] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition, Pergamon Press, Oxford, 1960. *
[186] M.L. Levin, R.Z. Muratov, Zh. Tekh. Fiz. 38 (1968) 1623; Sov. Phys. Tech. Phys. 13 (1968) 1318.
[187] C. Pecharroman, J.E. Iglesias, Phys. Rev. B 49 (1994) 7137.
[188] E.D. Belotski, S.P. Luk'yanets, P.M. Tomchuk, Zh. Eksp. Teor. Fiz. 101 (1992) 163; Sov. Phys. JETP 74 (1992)

88. ***
[189] S. Yamaguchi, J. Phys. Soc. Japan 15 (1960) 1577. ***
[190] A.G. Lesskin, V.E. Pasterak, A.A. Yushkanov, Zh. Eksp. Teor. Fiz. 83 (1982) 310; Sov. Phys. JETP 56 (1982) 710.
[191] E.I. Austin, M. Wilkinson, J. Phys. Condens. Matter 5 (1993) 8451.
[192] V. Russier, M.P. Pileni, Surf. Sci. 425 (1999) 313. **
[193] S. Yamaguchi, J. Phys. Soc. Japan 17 (1962) 184. **
[194] T. Yamaguchi, S. Yosida, A. Kinbara, Thin Solid Films 18 (1973) 63.
[195] F. Stietz, M. Stuke, J. Viereck, T. Wenzel, F. Traeger, Surf. Sci. 389 (1997) L1153.
[196] A.Ya. Blank, A.Ya. Sharshanov, Fiz. Nizk. Temp. 21 (1995) 263 (in Russian).
[197] A.S. Sukharier, in: M.I. Elinson (Ed.), Nenakalivayemye Katody (Nonheated Cathodes), Sovietskoye Radio,

Moscow, 1974, p. 39 (in Russian).
[198] P.G. Borziak, L.V. Viduta, P.E. Kandyba, D.P. Kolesnikov, A.D. Kostenko, Yu.A. Kulyupin, R.D. Fedorovich,

V.G. Yyastrebov, Izv. Acad. Nauk SSSR, Ser. Fiz. 37 (1973) 2613 (in Russian).

178 R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179



[199] H. Araki, T. Hanawa, Thin Solid Films 158 (1988) 207.
[200] A.S. Sukharier, S.V. Zagrebneva, E.N. Petrov, V.M. Suchilin, V.M. Trusakov, Bulletin of Inventions of USSR,

No 8, Certi"cate No 296179 (1971).
[201] A.S. Sukharier, S.V. Zagrebneva, V.A. Osipov, E.N. Petrov, V.M. Trusakov, B.L. Serebrjakov, Bulletin

of Inventions of USSR, No 25, Certi"cate No 349044 (1972).
[202] R.D. Fedorovich, A.G. Naumovets, P.M. Tomchuk, 9th Intern. Conf. on Vacuum Microelectronics Digest,

St Petersburg, 1996, p. 179.
[203] S.S. Ivanets, N.G. Nakhodkin, A.I. Novoselskaja, R.D. Fedorovich, Bulletin of Inventions of USSR, Certi"cate

No 1271278 (1985).
[204] G.A. Vorobyov, V.V. E"mov, L.A. Troyan, S. Lubsanov, Abstr. 5th Symp. on nonheated cathodes, Tomsk, 1985,

p. 240.
[205] C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47 (1976) 5248. *
[206] P.R. Schwoebel, I. Brodie, J. Vac. Sci. Technol. B 13 (1995) 1391.
[207] R.D. Fedorovich, A.G. Naumovets, P.M. Tomchuk, Condensed Matter Physics, 7 (1996) 5. *
[208] L.V. Viduta, R.D. Fedorovich, Abstracts of the 16th All-Union Conference on Emission Elecronics, Makhachkala,

1976, p. 40 (in Russian).
[209] M.I. Elinson, A.G. Zhdan, G.A. Kudintseva, M.Ye. Chugunova, Radiotekhnika i Electronika 10 (1965) 1500

(in Russian). **
[210] V.V. Nikulov, G.A. Kudintseva, M.I. Elinson, L.A. Kosulnikova, Radiotekhnika i Electronika 17 (1972) 1471

(in Russian).
[211] G.A. Kudintseva, M.I. Elinson, in: M.I. Elinson (Ed.), Nenakalivayemye Katody (Nonheated Cathodes), Soviet-

skoye Radio, Moscow, 1974, p. 29 (in Russian). **
[212] K. Sakai, I. Nomura, E. Yamaguchi, M. Yamanobe, S. Ikeda, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto,

T. Nakagiri, Proc. 16th Int. Display Res. Conf. (Euro Display 96) (1996) 569.
[213] A. Asai, M. Okuda, S. Matsutani, K. Shinjo, N. Nakamura, K. Hatanaka, Y. Osada, T. Nakagiri, Society

of Information Display, Int. Symp. Digest Tech. Papers (1997) 127.
[214] A. Benditskii, D. Danko, R. Fedorovich, S. Nepijko, L. Viduta, Int. J. Electron. 77 (1994) 985.
[215] B.M. Singer, Patent USA No 3919555 (1975).
[216] R.L. Parker, A. Krinsky, J. Appl. Phys. 14 (1972) 2700.
[217] J.F. Morris, Thin Solid Films 11 (1972) 259.
[218] L.V. Viduta, A.P. Ostranitsa, R.D. Fedorovich, S. Chumak, Ultradispersnye chastitsy i ikh ansambli (Ultrdisper-

sed Particles and Their Ensembles), Naukova Dumka, Kiev, 1982, p. 110 (in Russian).
[219] Yu.A. Kulyupin, K.N. Pilipchak, R.D. Fedorovich, Bulletin of Inventions of USSR, No 43, Certi"cate No 1193843

(1985).
[220] Yu.A. Kulyupin, K.N. Pilipchak, R.D. Fedorovich, Bulletin of Inventions of USSR, No 40, Certi"cate No 1279433

(1986).
[221] Yu.A. Kulyupin, K.N. Pilipchak, in: Dispergirovannye Metallicheskiye Plenki (Dispersed Metal Films), Institut

Fiziki AN Ukr SSR, Kiev, 1972, p. 238 (in Russian).
[222] Jagdeep Shah (Ed.), Hot Carriers in Semiconductor Nanostructures: Physics and Applications, Academic, San

Diego, 1992. **
[223] J.W. Gadzuk, L.J. Richter, S.A. Buntin, D.S. King, R.R. Cavanagh, Surf. Sci. 235 (1990) 317. *
[224] R.R. Cavanagh, D.S. King, J.C. Stephenson, T.F. Heinz, J. Phys. Chem. 97 (1993) 786.
[225] M. Brandbyge, P. Hedegard, T.F. Heinz, J.A. Misewich, D.M. Newns, Phys. Rev. B 52 (1995) 6042.
[226] R.G. Sharpe, St.J. Dixon-Warren, P.J. Durston, R.E. Palmer, Chem. Phys. Lett. 234 (1995) 354.
[227] J.W. Gadzuk, Surf. Sci. 342 (1995) 345.
[228] J.W. Gadzuk, J. Vac. Sci. Technol. A 15 (1997) 1520. *
[229] A. Goyette, N. Navon, Phys. Rev. B 13 (1976) 4320.
[230] R. Ruppin, J. Phys. Soc. Japan 58 (1989) 1125.
[231] E.D. Belotskii, P.M. Tomchuk, Int. J. Electronics 73 (1992) 915.
[232] D.Ya. Petrina, Zhurn. Vychislitelnoi matematiki i mat. "ziki 24 (1984) 709.

R.D. Fedorovich et al. / Physics Reports 328 (2000) 73}179 179


