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Abstract 

We study the electron-induced secondary electron emission of insulating targets by a Monte-Carlo simulation method. 
The most important collision mechanisms in the energy domain considered are investigated. The usual approximations 
apparently overestimate the elastic collision rate and empirical corrections are proposed. The self-trapping of the charges is 
explained by the polarization of the surrounding medium. The role of the polaronic effects in the Secondary emission as well 
as the sensibility of the results to the choice of the different parameters are analyzed. The influence of an internal electric 
field caused by a "frozen" charge distribution is also investigated. 
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1. Introduction 

For a realistic description of  the secondary elec- 
tron emission of  insulating targets, one needs to 
know how an electron interacts with the various 
components of  the sample. The corresponding en- 
ergy domain practically ranges from the primary 
beam energy down to a fraction of  an eV and the 
interaction cross-sections can vary rapidly with the 
energy of  the electron. 

When its energy E (reckoned from the bottom of 
the conduction band) exceeds the energy gap (E  > 
Eg = 10 eV), an electron can produce individual 
electron transitions from the valence band to the 
conduction one. It can also suffer elastic collisions 
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by interacting With the potentials which Surround the 
various ions of  the solid. When its energy is suffi- 
cient, it can also interact inelastically with the elec- 
trons of  the inner-shells of  the ions and cause their 
ionization: 

At lower electron energies (E  < Eg), the inelastic 
effects are mainly due to the electron-phonon colli- 
sions. The electron can always interact with:~the 
potentials surrounding the ions but a Static potential 
model may turn to be inadequate and a conventional 
approach may strongly overestimate the importance 
of  the elastic effect. 

When its energy becomes sufficiently i0w, /an  
electron, by locally distorting the ltittice, can~consid- 
erably reduce its mobility. This " p o l a r o n i c ,  effect, 
assisted by the presence of  defects or o f  other inho- 
mogeneities in the sample can give rise to-charge 
trapping. 
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In an insulator bombarded by an electron beam, 
regions of positive and negative charging-up appear. 
For the energy domain considered in the present 
study, the density of charge is always positive near 
the surface and becomes negative in the bulk of the 
solid. Analytical expressions have been proposed to 
represent this charge and the electrical field which 
results from it. 

In Section 2 of this paper we present our model 
for the interaction of an electron with an insulating 
target and we determine the cross-sections for the 
different collisions. The model is not able to account 
for specific effects due to the crystalline nature of 
the sample. Thus it can be considered as mainly 
adapted for amorphous targets or for polycrystals. 
The values of the parameters used to carry out the 
present calculations have been obtained from the 
data available in the literature for amorphous alu- 
mina. 

In this section, some corrections for the elastic 
cross-sections at low energies are proposed and the 
concept of charge trapping via the polaronic effect is 
also analyzed. 

In Section 3 we present our results. We discuss in 
detail the influence of different parameters of the 
model and we introduce the effect of the electrical 
field. 

The conclusions are presented in Section 4. 

2. Electron-insulator interaction model 

2.1. Electron-electron collisions 

An electron with an energy higher than the band 
gap can excite electron-hole pairs. The electron 
which is promoted from the valence band to the 
conduction one can then take part in the transport 
process. We shall presently assume, for the sake of 
simplification, that in the relaxation of the valence 
band hole the energy is transferred to the band as a 
whole so that this process does not significantly 
contribute to the emission of secondary electrons. 

The energy loss AE and the momentum transfer 
hq suffered by an electron in a collision within a 
delocalized electron gas can be expressed from the 
dielectric theory by considering the loss function 
I m ( - 1 / ~ ( q , A E ) ) ,  where ~(q,AE) is the dielectric 

function for the medium. The differential probability 
of a collision per unit path length is 

% ~ ( E ; A E , q ) - - -  Im . (1) 
~-a 0 E q e ( q , A E )  

In a free electron material, within the random 
phase approximation, E(q, AE) can be conveniently 
assimilated to the Lindhard function [1]. We can then 
distinguish in %1 contributions due to the excitation 
of electron-hole pairs from collective ones corre- 
sponding to plasmon creation. However, in the case 
of an insulator, the above approximations loose much 
of their significance. A possible approach is to re- 
place simply E(q,AE) by e(0,AE) [2,3] and also 
sometimes to replace in practice E(0,AE) by its 
optical equivalent E(h w) where h w --- AE. 

In an ionic solid, an electron interacts with a 
charge distribution which presents strong spatial in- 
homogeneities. So it seems important to account for 
a local field which can differ markedly from the 
mean field which corresponds to the q = 0 limit. 

Several authors, such as Tung et al. [4], Penn [5], 
and Tanuma et al. [6], have developed some methods 
for extending the determination of E(0,AE) to non- 
zero values of q. 

We have also previously proposed [7,8] an empir- 
ical method to introduce the local field effects 
by using the following expression, where 
Im(-1/E(q,  AE)) is approximated by a separable 
function of q and AE: 

%1( E;AE,q) -- - -  O~q Im 
• "a0 E q e ( A E )  " 

(2) 
In the expression Olq --- (1 + bqq) "1 and  bq is the 

"local field" parameter. 
The probability of an electron-electron collision 

per unit path length is then given by 

O'~l( E) = fE~ d( AE) fqql~l( E;AE,q) d q, (3) 

where ql and q2 represent the limits for the momen- 
turn transfer that an electron can undergo in a colli- 
sion in the free electron scheme. 

Swanson [9] has measured the dielectric function 
of polycrystalline "y-A1203 films as well as that of 
amorphous A1203 anodized films, from characteris- 
tic energy loss experiments. In our calculations, we 



J.P. Ganachaua~ A. Mokrani / Surface Science 334 (1995) 329-341 331 

have used the values for amorphous alumina given in 
Ref. [9]. These latter agree well with the results 
obtained from optical measurements by Arakawa and 
Williams [10] with the same type of targets. 

In Ref. [9], the energy losses A E range from 6 to 
35 eV. They present a marked maximum near 25 eV, 
which manifests itself as a broad peak that can be 
attributed to a bulk plasmon excitation. We have 
extended these values beyond 35 eV by assuming a 
simple law in A / A E " .  With A = 1.6 X 105 and 
n = 3.75, a reasonable agreement with the sum rules 
[11] is obtained at high energies. 

In the present model, it is admitted that the major 
process for bulk plasmon damping is a local one and 
that it essentially gives rise to the creation of one 
electron-hole pair. So, the collective excitation, 
which strongly contributes to the experimental loss 
function, has not practically to be distinguished from 
the individual excitations with regard to the sec- 
ondary electron emission. The experimental energy 
loss spectrum presents some features that can be 
attributed to surface excitations but, in practice, they 
have not been distinguished from the bulk excita- 
tions in our calculations. 

A value for the local field parameter bq used in 
relation (2) can be estimated by trying to reproduce 
as well as possible the variation with the energy of a 
reference mean free path such as that proposed by 
Tanuma et al. [12]. This latter seems to account 
correctly for the known experimental values, for a 
large variety of samples, and is in rather good agree- 
ment with the relation proposed by Seah and Dench 
[131. 

If we write the local field parameter under the 
form bq = aq/(E1R/aao), where E R is the Rydberg 
energy and a 0 the Bohr unit, a value of the local 
field parameter corresponding to aq = 0.1 seems to 
reproduce nearly perfectly the variations of A given 
by Tanuma et al., in all the energy domain ranging 
from 50 to 1500 eV, as can be seen in Fig. 1. 

The energy of an electron excited out of the 
valence band, either by the direct creation of a pair 
or by plasmon damping, is determined by the non-di- 
rect transition model [2,7,14]. The probability for the 
energy AE to be transferred to an initial energy level 
E 0 of the valence band is assumed to be proportional 
to the product of the densities of states: 

P (  Eo,A E ) = Cn( Eo)n (  E o + AE) ,  (4) 
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Fig. 1. Inelastic electron-electron collision mean free path calcu- 
lated from the dielectric theory for different values of the local 
field parameter aq. The crosses correspond to the calculations of 
Tanuma et al. [12]. 

where C is a constant and n is the density of states. 
This latter is assumed to vary like ~ for the 
conduction band. The valence band is made of two 
sub-bands which are rectangular in shape, one lying 
from - 9 to - 16.3 eV, with 6 electrons per molecule 
of A1203, and the other lying from - 24.8 to - 28.1 
eV and containing 2 electrons [15]. 

From classical arguments we assume that, after 
the collision, the excited electron moves in a direc- 
tion perpendicular to that of the other particle and 
that its momentum vector lies in the incidence plane, 
defined by the directions of the incident particle 
before and after collision. 

2.2. Inner-shell ionizations 

The classical formalism of Gryzinski [16] has 
been retained to describe the inelastic interactions of 
an electron with the inner shells of the ions. In 
alumina, for primary energies Ep < 1.5 keV, only 
three atomic levels have to be considered: AI2p, 
Al2s and O ls, for which the ionization potentials 
are 77, 124 and 533 eV, respectively [17]. In prac- 
tice, only the two first levels contribute significantly 
at these primary energies. For A1203, there are 
approx ima te ly  Nat = 100 atoms per nm 3, that is 40 
aluminum atoms and 60 oxygen atoms per nm 3. 

Even if the mean free paths for these collisions 
are very large, of the order of one hundred times the 



332 J.P. Ganachaud, A. Mokrani / Surface Science 334 (1995) 329-341 

electron-valence band one, their stopping power re- 
mains appreciable and their contribution to the sec- 
ondary electron emission is non-negligible. 

Concerning the angular aspect of these collisions, 
from classical arguments, the deflection angle O 
suffered by the incident electron can be calculated by 
the relation 

sin20 = AE/E, (5) 

where AE is the energy transferred to an inner-shell 
electron. It is assumed that this particle is ejected in 
a direction perpendicular to the direction followed by 
the ionizing electron after the collision. 

The relaxation mechanisms which follow the ion- 
ization of an inner-shell (radiative transitions or 
Auger effects involving the deep hole) have not been 
taken into account in our calculations. 

2.3. Electron-phonon collisions 

At low energies, when E does not exceed two or 
three times the value of the gap Eg, an electron has 
an important probability to interact with the lattice 
vibrations. 

The interaction of a quasi-free electron with the 
longitudinal optical (LO) phonons in a polar medium 
can be treated by FrShliCh's perturbation theory [18] 
(see for instance Llacer and Garwin [19] or Fitting 
and Friedmann [20]). 

The interaction with the lattice is accompanied by 
the creation or by the absorption of a phonon. For 
the optical branch, it is reasonable to ignore the 
dispersion relation of the longitudinal phonon and to 
characterize it by the unique frequency O)LO. 

An electron with the energy E has a probability 
per unit of path length to create a phonon of fre- 
quency w and so to lose the energy AE = hto given 
by (,+1)(1 1)1 

- 5 - -  i(o) a0 [I1+  :,11 I 
Xln [ 1 / 2 ] ,  

AE 

E 

(6) 

where nq represents the occupation function for the 
phonon level at temperature T, taken here equal to 
300 K. e(0) represents the static dielectric constant 
and E(~) is the high frequency or optical one. 

A similar expression can be obtained for the 
phonon absorption rate o-p~(E). 

Concerning the angular aspect of the collision, the 
probability for an electron to be deflected by an 
angle O is given by 

1 sin O 

W(O) C(E) E+E'-2(EE')I/ZcosO ' (7) 

with 

_1 _I/21n( E + E,_2( EE,)I/2 ), 
~(EE') E+ E'+ 2(EE') 1/2 

C(E) 

(7') 

where E' is the final energy of the electron after the 
collision. 

In our calculations the values e(0) = 9 and e(w) 
= 3 have been adopted and only one LO phonon 
mode has been considered. Its energy is AE = h WLO 
= 0.1 eV. Moreover, for calculating the collision 
rates, the effective mass of the electron has been 
assumed to be that of a free particle: m*/m o = 1. 

The phonon creation rate is much higher than the 
absorption rate, by a factor of about 10, so that the 
absorption process has been neglected in our calcula- 
tions. The electron-phonon collision rate decreases 
rapidly when the energy increases and, in practice, 
its contribution can be limited to the domain of 
energies E < 20 eV. 

The collisions with the LO polar mode represent 
the main inelastic interaction process at low electron 
energies. However, several authors (Di Maria and 
Fischetti [21], Cartier and Mc Feely [22] for instance) 
have shown that the collisions with the longitudinal 
acoustic (LA) phonons also played an important role 
for the electron transport in semiconductors. Such 
collisions involve low energy transfers (at least in 
the q = 0 limit) but can give rise to important elastic 
deflections. The importance of this contribution 
seems to be still a subject of controversy. Moreover, 
at low energies, the conventional methods of calcula- 
tion of the elastic mean free path apparently present 
some difficulties, as will be seen in the following 
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section. For these reasons the electron-phonon inter- 
actions involving the non-polar modes have not been 
taken into account in our model. 

2.4. Elastic collisions 

An electron can also interact elastically with the 
solid when it crosses the regions surrounding the 
ions, and where the potential can present strong 
spatial variations. 

It is generally well admitted [23-26] that the 
partial wave analysis (PWA) method gives a good 
description of the scattered wave. The differential 
elastic cross-section %~(E ,O)  can be written 

t3relas ( E ,  O- ) 

g 2 E (2 l  + 1) e ia' sin 6,P,(cos O) (8) 
l=0  

where O is the deflection angle for the incident 
electron and K is its wave-vector before scattering. 
Pt(cos O) is the Legendre polynomial of order l and 
6 t is the phase-shift for the Ith partial wave. The 
phase-shifts 3 l are functions of the energy E. 

To achieve the calculations of the phase-shifts we 
obviously need a definite expression for the potential 
V(r). When it is possible, one can for instance use a 
muffin-tin potential that accounts for the superposi- 
tion of the atomic potentials in the solid state. Ex- 
change effects can also be included (see for example 
Pendry's book [27] for a discussion). 

As far as we know, such potentials are not 
presently at hand for the metal oxides. One has thus 
to turn towards approximate analytical expressions 
such as that given by Bonham and Strand [28] for the 
neutral atoms. One assumes that V(r)  is of the form 

Ze e 3 
V ( r )  = - - -  • Yi e x p ( - A i r ) ,  (9) 

r i=1 

with 

'Yi = ai q- bi In(Z)  + c i ln(Z)  2 + d i ln(Z)  3 

+ e i I n ( Z )  4 ( 9 ' )  

and equivalent expressions for A i. Z is the atomic 
number of the target atom and the potential V(r) in 
Eq. (9) is expressed in Ry. 

At large distances r this potential vanishes while 

the muffin-tin potential is constant in the whole 
space out of the atomic spheres. 

It has been shown (see Jousset [29] for instance) 
that such differences can lead to marked deviations 
between the cross-sections obtained from both types 
of potentials, principally at low energies. It is how- 
ever probable that, in this energy domain and espe- 
cially for insulators, the model of an electron inter- 
acting with a purely static potential has itself to be 
revised. 

For alumina, we have also used relation (9) for 
V(r), with an effective atomic number given by 
Zef f = } (2ZAl  -t- 3 Z o ) .  

At high energies, the number of significant 
phase-shifts 6 l increases rapidly with E. Conse- 
quently, the computational time increases and accu- 
racy losses can also appear. In practice, in this 
energy domain, it is often sufficient to use a simpler 
expression, a screened Rutherford-type approxima- 
tion for instance [30,31], for the elastic cross-section. 
This is the solution which has been adopted here for 
the energy domain E > 500 eV. The differential 
cross-section writes 

Z 2 e  4 1 

trelas(E'O) = 4E 2 (1 + 2/3 - cosO)  2 '  (10) 

leading to the total elastic cross-section 

Z 2 e  4 q'r 

%as(E)  4E 2 /3(1 + / 3 )  " (11) 

By choosing /3 = bzZ/3/E,  and by matching the 
values of %1as(E) to those given by the partial wave 
analysis (PWA) at E = 500 eV, one gets the value 
6.36 for b, to be compared with the value of 5.44 
precised by Nigam et al. in Ref. [30]. 

In the low energy domain, the elastic mean free 
path calculated by the phase-shift method becomes 
very small, of the order of 0.1 nm, which is sensibly 
smaller than the interatomic distances. This result is 
unrealistic. Moreover, in this energy domain, the 
elastic collisions are nearly isotropic. In such condi- 
tions, the successive portions of the trajectory fol- 
lowed by the electron, where the elastic collisions by 
far predominate, will cluster together. Accordingly, 
the electron will be localized in a very small region 
of space and then it will practically get trapped. The 
values calculated for Act,s being too small, the corn- 
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putation time is strongly affected by this localization. 
However, as these clustered trajectories are mainly 
elastic, they do not contribute appreciably to the 
secondary emission. 

Several techniques can be proposed in order to 
reduce the computation time. A possible method 
consists in constructing scattering cross-sections for 
"condensed histories" of the particle (see for in- 
stance the paper by Czyzewski and Joy [32] for a 
similar approach). In the present context, the idea is 
to replace the bare electron-phonon collisions by 
renormalized ones, which have been conveniently 
"dressed" for the elastic effects. 

Let Aph(E) be the electron-phonon mean free 
path. From this value, the distance Lph travelled by 
the electron between two electron-phonon collisions 
can be simulated. This portion of the trajectory, at 
least in the absence of an electric field, would be a 
straight line and would last tph = Lph/v,  where v is 
the electron velocity. On the other hand, one can also 
simulate, in a separate calculation, all the elastic 
collisions that the electron suffers during tph. The 
consequence of these collisions is that the trajectory 
is no more a straight line one. It is possible to study 
the statistics of the global angular deflection and of 
the effective displacement the electron has suffered 
in this condensed history and so to use these laws to 
define a "dressed" electron-phonon collision. By 
this artifice, one can considerably shorten the compu- 
tation time, by a factor of 5 or even 10, with only 
small errors on the values of the secondary emission 
yields. 

The non-polar interactions of an electron with the 
longitudinal and transverse acoustic phonons (LTA) 
or, to a lesser extent, with the transverse optical 
phonon mode (TO), which can also give rise to 
quasi-elastic transitions, have not been taken into 
account in our model (for a good review of 
electron-phonon interactions see for instance the 
books of Jacoboni and Lugli [33] or of Moglestue 
[34]). However, quite basic reasons are also at the 
origin of the abnormally small values of the elastic 
mean free path obtained at low energies by the 
phase-shift method. The assumption of a rigid static 
potential is probably insufficient, and dynamic ef- 
fects associated with the polarization of the electron 
cloud have also to be taken into account. 

In the present study we have only tried to correct 

10 
/ ~" PWAI 

, , . - . ,  8 ................................................ ~ i  . . . . . . . . . . . . . . . . . . . . . .  7 . . . . . . . . . . . . . . . . . . . . . . .  

'l:: i : ~---.. i 
e.. 6 

.~' e l a s  i . . . . .  - 

" 4 ................... -:;';-i ...................................................... T ............................. ~ ......................... 

- ' ~ i . ~ ' ~  i 

0 . J . . - . -  i J 
0 1 0 20 30 40  50 

E ( e V )  

Fig. 2. Behavior of the different inverse mean free paths at low 
energies. The label "el" corresponds to the electron-electron 
inelastic collisions and "ph" to the electron-phonon collisions; 
"elas" represents the elastic scattering rate obtained by multiply- 
ing the PWA calculations by the empirical "cut-off" function. 

the elastic mean free path for what seemed to be its 
major deficiency, i.e. the unphysically low values 
obtained at low energies. This has been done in an 
empirical way and, in our simulation program, the 
elastic cross-sections calculated by the phase-shift 
method have simply been multiplied by a "cut-off"  
function. 

The role of this function is to reduce appreciably 
the elastic effect at very low energies. At higher 
energies, it must tend towards unity so that the 
behavior of the static potential used in the phase-shift 
method is recovered. The choice is of course not 
unique but a function of the form 

Re (E)  = th[ a c ( E / E g )  2] (12) 

seems to be able to play correctly this role. Depend- 
ing on the value of the dimensionless parameter ac, 
the limit behavior will be attained more or less 
rapidly. The influence of this choice will be analyzed 
in what follows. 

Fig. 2 shows how the different collision rates we 
have calculated vary with the energy in the case of 
alumina. 

2.5. Polaronic effects 

In a dielectric medium, another basic ingredient 
of the transport model comes from the polaronic 
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effects. The reader is referred to the review paper by 
Austin and Mort [35] for instance for a complete 
presentation. The recent analysis made by Blaise [36] 
allows an interesting insight into these concepts and 
permits to clarify their role in space charge physics. 

Due to the polarization field it induces around it, 
an electron can suffer a stabilizing interaction and 
get trapped in the ionic lattice. It thus behaves like a 
quasi-particle that can move in the medium, sur- 
rounded by its polarization cloud. The polaron has 
generally an important effective mass. The holes 
created in the valence band due to the inelastic 
collisions are also subjected to similar effects. 

The analysis that will be presented in what fol- 
lows leads to think that the polaronic effects are 
essential to understand in a quantitative way the 
secondary electron emission of insulating targets. 

It is probably a huge task, starting from first 
principles, to integrate all these effects in a simula- 
tion model. Thus, in the present study, a much more 
empirical approach has been retained to account for 
the possibility, for a low energy electron, to get 
trapped due to this polaronic process. So, the proba- 
bility per unit of path length, Ptrap(E), of such an 
event for an electron of energy E has been chosen of 
the form 

Pt~,p(E) = Strap e x p ( -  ~/trapE). (13) 

The purpose is here to indicate that, rather natu- 
rally, the weaker its energy is, the more chance the 
electron has to get trapped and we have arbitrarily 
chosen an exponential law to account for this. The 
constant "}/trap limits the energy domain practically 
concerned by this type of process and the constant 
St~,p allows to adjust its frequency. 

Moreover, we have assumed that, by getting 
trapped as a polaron, an electron gains a large effec- 
tive mass and subsequently remains practically local- 
ized at the trapping site. Its mobility has thus been 
neglected, even in the presence of an electric field. 
We have also assumed that the holes created in the 
valence band had a negligible mobility. All these 
assumptions obviously deserve a more complete 
study. 

In fact, in an insulating target, the charges can 
hop from site to site due to thermal excitations or by 
band conduction. They can also move due to the 
presence of internal fields. Some of them will recom- 

bine. The presence of impurities, either charged or 
neutral, of defects or more generally of inhomo- 
geneities of the polarizability in the dielectric medium 
can be responsible for the existence of potential 
wells. The existence of such "polarizability defects" 
can probably be considered as the key concept to 

'explain the localization of the polarons and the for- 
mation of the space charge in an insulating target 
(see for instance the papers by Le Gressus et al. [37] 
and by Blaise and Le Gressus [38] for a convincing 
analysis of all these effects). 

The interactions responsible for the trapping and 
for the detrapping of the charge carriers are influ- 
enced by the temperature as most of these processes 
are assisted by phonons. For the moment it seems 
difficult to introduce explicitly these effects in our 
model on account of all the other uncertainties which 
still affect the important mechanisms on which the 
secondary emission of insulating targets depends. 

2.6. Influence of  an internal electric field 

Simple physical arguments can be proposed to 
explain how an internal electric field builds up in the 
insulating material. As the primary electrons pene- 
trate into the target, they lose energy due to the 
collisions until they get thermalized, so that their 
path ends and they get localized. At a certain depth, 
a negative charge distribution thus sets up. On the 
other hand, the surface region can charge positively 
when the secondary current which leaves it exceeds 
the primary one. 

Due to the spatial variation of the charge density 
with the depth, an internal electric field appears. In 
actual experiments, the component of the field per- 
pendicular to the surface can reach several MV/cm.  
This field will modify the energy and the velocity of 
the electrons which take part to the transport in the 
target. The energy gains can be subsequently dissi- 
pated due to the collisions. 

By referring to this scheme, one can represent the 
variation of the dipolar charge density with the depth 
z by an analytical expression [39-41]: 

p( z )  = P0(1 - z / z *  )e -z/z* , (14) 

where P0 is the charge density at the surface and z * 
the depth at which the space charge changes sign. 
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The resulting field can be written as 

e z ( z )  = E ° z / z  * exp(1 - z / z*  ). (15) 

In fact, the problem is much more complex and 
the charge density varies not only with the depth z 
but also in any direction parallel to the surface, with 
the distance r from the point of impact of the 
primary electrons. The field E(r , z )  has thus a radial 
component Er(r,z) , as well as a longitudinal one 
Ez(r,z). 

In an insulating target submitted to an electron 
bombardment, the charge and thus the field vary 
with time. One has also to account for the environ- 
ment of the target that is for the limit conditions that 
are imposed to the field (image charges). All these 
aspects have been analyzed in detail by Cazeaux in 
Refs. [42,43]. 

The field depends on the secondary emission, 
which itself depends on the field. So, to be rigorous, 
one has to introduce the field in a self-consistent way 
in the simulation model (see, for instance, Refs. 
[44,45]). 

For the present study, no self-consistency was 
introduced in our calculations and the various com- 
ponents of the field have simply been represented by 
the approximate analytical expressions. 

Moreover, to save computational time, the electric 
field components have been considered as either 
purely longitudinal or purely radial. For this latter 
component, we have used the same type of expres- 
sion as for the longitudinal one: 

Er( r) = E ° r / r  * exp(1 - r / r  *). (16) 

In the calculations, E °, E °, z * and r * are consid- 
ered as parameters which can be varied to check the 
influence of the electrical field and of its spatial 
variations on the secondary emission. 

From the point of view of the simulation, it has 
been assumed that the effect of the field was only to 
modify the energy and velocity of an electron along 
the path L it travels between two collisions. 

2.7. Crossing of the surface potential barrier 

Using a classical picture one assumes that, to be 
emitted when it reaches the free surface of the target, 

an electron must have an energy E and a direction a9 
(referred to the normal to the surface) such that 

ECOS 2 O>__ X, (17) 

where X represents the electron affinity of the sam- 
ple. 

Moreover, if the electron reaches the surface out 
of the emergence cone defined by the aperture angle 
20~ = 2arccos[(x /E) l /2] ,  it is specularly reflected 
with no energy loss. 

For an insulator, the electron affinity X is weak. 
We lack precise values for alumina, and X probably 
also varies with the nature of the sample considered. 
However, from Refs. [39-41], one can estimate that 
a value of 0.5 eV is correct for amorphous alumina. 

3. Results and discussion 

3.1. Reference values 

There are not many experimental results on the 
secondary electron emission of metal oxides. How- 
ever, Kamaya et al. [46] have made a systematic 
study of the available experimental data for the 
secondary yield for a large number of insulators. 
They have proposed a universal relation between the 
reduced yield 3/Sm and the reduced primary energy 
Ep/Ern (Em is the value of the primary energy at 
which the secondary yield reaches its maximum and 
6m is this maximum). The values E m = 610 eV and 
6 m = 5.4 introduced in this general expression give a 
good overall agreement with the measurements of 
Dawson [47] for alumina. 

More recently, Saito [48] has also measured the 
secondary yield for three different targets of alumina 
ceramics, for a primary energy of 1 keV. The values 
obtained are 6.0, 5.2 and 6.7. For a sapphire sample, 
he measured a 6 of 10.1 at the same primary energy. 

Our electron-insulator interaction model probably 
accounts for the main physical processes on which 
the secondary electron emission of metal oxides 
depends. However, several parameters appear in the 
empirical laws we have proposed. The physical 
meaning of these parameters is quite clear but their 
values can be precised only by comparing the simu- 
lation results to the experimental measurements. 
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Fig. 3. Variations with the primary energy of  the secondary yield 
6 and of the backscattering coefficient "q for the reference set of 
parameters: a c = 0.5 for the correction of the elastic effects, 
Str~p = 1 nm-1  and ")'trap = 0.25 eV-1  for the trapping rates. 

Preliminary calculations have allowed us to esti- 
mate what can be considered as a set of reference 
parameters. However, these values will be further 
varied to check the influence of their choice, particu- 
larly on the secondary electron emission yields. 

A value of 0.5 has been taken for the elastic 
cut-off parameter ac. This value is such that the 
corrected elastic mean free path already represents 
95% of the PWA limit at the energy E = 17 eV. 

The trapping rate parameter Strap has been set 
equal to 1 nm -1 and a value of 0.25 eV -1 has been 
chosen for the other trapping parameter Ytrap" With 
this choice, the corresponding trapping mean free 
path Atrap--  - 1  - - / ) t rap  is about 1.3 nm for E = 1 eV and 
3.5 nm for E = 5 eV. 

The results we have obtained with this set of 
parameters for the variation with the primary energy 
Ep of the secondary yield 6 and of the backscatter- 
ing coefficient ~7 are presented in Fig. 3. They have 
been obtained with a statistical sample of 1000 pri- 
mary trajectories in the Monte-Carlo simulations. 
This sample is not very large but this does not seem 
to be too dangerous in the present context, due to the 
high values of the secondary yields. 

The orders of magnitude are correct. Moreover, 
one predicts a maximum f o r  t~(Ep) a t  E m = 750 eV, 
where 6 m is approximately equal to 5.8. 

The values obtained for 77 are also of the correct 
order of magnitude. However, one can remark that 

they are globally too high if one refers for instance 
to the value of r/ for pure aluminum, which is only 
about 0.25 at 1 keV [49]. Moreover, the curve ~7(Ep) 
seems to keep growing a little too rapidly with the 
energy in this region. 

3.2. Influence o f  the parameters 

We have studied separately the influence on the 
secondary emission yield of each of the three param- 
eters a c, Strap and "rtrap" 

For ac, three rather different values have been 
considered: a c = 0.1, 0.5 (taken here as the refer- 
ence value) and 2.5. 

Fig. 4a shows how the secondary yield varies 
with this choice. The effect is more apparent at high 
primary energies. For example, 8 is practically un- 
changed when a~ goes from 0.1 to 2.5 for Ep = 100 
eV, but is modified by nearly 100% for Ep = 1500 
eV. 

On account of the values retained for cec, the 
corrections of the elastic cross-section only affect in 
practice the secondary electrons. An increase of the 
elastic effect will produce a relative decrease of the 
inelastic one, that is of the production of secondary 
electrons. This will reduce 8. Moreover, the path 
that these particles have to travel before they reach 
the free surface will probably augment if the rate of 
the elastic collisions increases, as these latter are 
accompanied by appreciable angular deflections. This 
goes in the sense of a diminution of the maximum 
escape depth of the secondary electrons. This can 
explain the shift of the maximum of the curve 6(Ep) 
towards lower primary energies, as well as the 
diminution of the yield when the elastic effects 
increase. 

It is clear that these corrections do not affect the 
behavior of the backscattered electrons, that is of the 
coefficient ~/. 

Fig. 4b shows the influence of the trapping rate 
Strap on the secondary emission yield. The values of 
the rate considered here are 0.2, 1.0 (reference value) 
and 5.0 nm -1, corresponding to a mean free path 

_ - 1  ~trap- etrap of about 6.4, 1.3 and 0.3 nm, respec- 
tively for E = 1 eV and of 17.4, 3.5 and 0.7 nm for 
E = 5  eV. 

One can note the importance of the trapping rate 
on the secondary yield, principally at high energies, 
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where 6 varies by a factor of  nearly 3 when Strap 
varies from 0.2 to 5.0. The explanation seems rather 
simple here as, at any energy, the trapping effects 
reduce the probability of  escape of the secondary 
electrons and so the values of  the yield. It is also 
natural to note that the effect is reinforced at higher 
primary energies because the mean creation depth of 
the electrons is larger. This also explains the shift for 
the maximum of 6 towards lower primary energies 
when Strap increases. 

One can even say that, without polaronic trap- 
ping, the inelastic effects included in the model 
would be insufficient to limit efficiently the maxi- 
mum escape depth of the secondary electrons so that 
no maximum would appear for 6 in the explored 
energy region. 

Fig. 4c shows how 6 varies with the energy 
parameter '~trap" The values chosen for ~trap are 0.2, 
0.25 (reference value) and 0.3 eV -~. On account of 
the exponential variation w i t h  "ytrapE, which has been 
assumed f o r  etrap(E), the selected range of variation 
seems sufficiently large to be significant. For the 
three above values, the maximum trapping rate Str,p 
is roughly divided by a factor of 5 when E is equal 
to 8, 6.5 and 5.5 eV, respectively. 

The same remarks as for the trapping rate Strap 
can still be made. An augmentation of "}/trap, amounts, 
for a given energy E, to a reduction of the probabil- 
ity of  trapping and thus of course to an increase of 
the maximum escape depth of the electrons. This 
explains correctly the augmentation of 6 when ')/trap 
increases, as well as the shift of  the maximum of 
6(Ep) towards lower energies observed in Fig. 4c. 
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3.3. Influence o f  an electric f ield 

The influence of the internal electric field has 
been studied by choosing suitable values for the 
parameters E °, z* ,  E°r and r* involved in the 
analytical expressions (15) and (16). 

i00 

Fig. 4, Influence on the variation of the secondary yield with the 
primary energy of the different parameters introduced in our 
model: (a) elastic effect cut-off parameter o~c; (b) trapping rate 
parameter Strap; (C) trapping energy parameter Ytrap" The reference 
values are those of Fig. 3. 
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Fig. 5a shows the charge distribution p-(z) eval- 
uated by simulation for the primary energy Ep = 1 
keV. It has been obtained by counting the number of 
electrons trapped at a given position (r,z) due to the 
polaronic effects, and by summing over the variable 
r. Similarly, p+(z)  represents the computed distribu- 
tion for the creation of the holes, and p(z) is the 
sum of these two contributions. 

One can observe that the sign of p(z) changes at 
a depth z of about 5 nm. This can only be taken as 
an order of magnitude for the parameter z * because 
it has been obtained here by assuming a frozen 
distribution for the charges. It is for instance much 
smaller than the value of 38 nm used by Kortov et al. 
in Ref. [39]. 

Fig. 5b gives the radial distributions p-(r) for 
the trapped electrons and p+(r )  for the holes created 
in the target by summing the computed (r,z) distri- 
butions over the depth z. The total charge distribu- 
tion p(r) shows a strong maximum for r = 0. This 
result is not very significant because it has been 
obtained by assuming a pinpoint primary spot. It is 
probably more realistic to consider that the intensity 
of the primary beam can vary on the surface of the 
sample with the distance r from the beam axis. Fig. 
5c presents the results we have obtained by assuming 
a Gaussian distribution for this intensity, with a 
standard deviation of 2.5 nm. 

From these distributions, one can estimate that the 
order of magnitude for r * is still 5 rim, and that this 
latter value probably represents a lower limit for this 
parameter. 

Fig. 6 shows how the secondary yields 6 and ~7 
vary under the influence of an internal field. 

The first set of curves 6 and ~7 has been obtained 
by setting E ° = 0, z * = 5 rim, and by varying E °. 
This longitudinal field is assumed to be directed 
towards the interior of the solid so that it has a 
tendency to drive the secondary electrons towards 
the surface and thus to augment the yield. Correla- 
tively, one can expect that the application of this 
electric field will increase the mean kinetic energy of 
the electrons and thus will reduce the global proba- 
bility of trapping and augment the creation of elec- 
tron-hole pairs. The effect one observes is indeed an 
increase of 8 and r/. However, this effect is small 
and the secondary yield only varies by less than 10% 
when E ° increases from 0 to 25 MV/cm,  though for 
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Fig. 5. Charge distributions corresponding to the creation of the 
electron-hole pairs ( p + ) ,  to the trapping of the low energy 
electrons ( p -  ), and to the sum of these two contributions ( p): (a) 
depth distributions; (b) radial distributions for a pinpoint primary 
spot; (c) radial distributions for a "Gaussian " profile. 
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Fig. 6. Modifications of the secondary yield 6 due to the longitu- 
dinal component Ez(Z) or to the radial component Er(r) of the 
internal electric field. The parameters z * and r * are both equal 
to 5 nm. 

this latter value of  the field breakdown is l ikely to 
o c c u r .  

The second set of  curves has been obtained by  
setting E°z = 0, r * = 5 nm and by varying E °. It is 
assumed that the radial electric field is divergent. 
This means that the electrons are driven back to- 
wards the primary beam axis. One can expect that, 
globally,  this will  lead to a diminution of  the yield. 
This is in fact what is observed in Fig. 6. However,  
the effect is once more very small and the secondary 
yield 6 only varies by a little more than 5% when E ° 
increases from 0 to 25 M V / c m ,  while r/ is practi- 
cally unchanged. 

4. Conc lus ion  

Some aspects of our model  have been introduced 
in a heuristic way. They would of course deserve a 
more rigorous formulation. Some basic points have 
also been completely ignored. So, the building of  the 
charge distribution, the constitution of  the internal 
field in the sample, its influence on the electron 
transport should ideally be studied in a self-con- 
sistent scheme, instead of  using a " f rozen- f i e ld"  
picture. The mobil i ty of  the trapped charges has also 
been ignored. Nevertheless it seems possible to ad- 
vance some rather general conclusions from this 
study of  the secondary electron emission of  alumina. 

It appears that all the physical  ingredients intro- 
duced in our model  effectively play a role and that 
they are all necessary to predict correct values for 
the yields. Moreover,  to obtain the right order of 
magnitude for the yield 6 and to account for its 
variation with the primary energy Ep, we were led to 
admit that a low energy electron has an important 
probabil i ty to get trapped along its path in the target. 
This assumption seems necessary to reproduce the 
presence of  a maximum in the curve 6(Ep)  at the 
appropriate primary energy ( E  m ~ i keV). 

The trapping rates we have considered correspond 
to mean free path values of  about 5 nm for an 
electron of 1 eV. Part of  the e lec t ron-hole  pairs 
created in the target wil l  in fact recombine, so that 
the role of  the trapping effects in the reduction of  the 
yield is probably exaggerated in our model. How- 
ever, it seems difficult to admit that charge trapping 
can uniquely be attributed to the presence of  defects, 
in the usual sense of this term, in the target. The 
usual concentrations would be insufficient to explain 
the smallness of  the mean free paths indicated above. 
More likely, as pointed out by Blaise [36], what is 
concerned here is the self-trapping of  the charges in 
the dielectric medium, by formation of polarons. Our 
own results thus seem to confirm this conclusion. 
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