

Resistance Reproducibility & Thermal Coefficient of ALD coatings at Argonne

(LAPD project collaboration meeting 06-10-2010)

<u>Anil Mane</u>, Qing Peng, Jeffrey Elam(Group leader)

ALD Research Program, Process Technology Research Group

Energy Systems Division.

Outline

- □ LAPD Project: Importance of atomic layer deposition (ALD)
- Development of novel resistive coatings by ALD at Argonne
- **Electrical measurements and thermal coefficient study of resistive coatings**
- Next plan and Summary

LAPD project background

- Apply the basic concept of "micro-channel plate" (MCP) detectors to the development of large-area photo-detectors (LAPDs) [8"x8" MCP] with quantum efficiencies and gains similar to those of photo-tubes.
- To design and fabricate "economical" robust LAPDs that can be tailored for a wide variety of applications that now use photomultipliers.
- LAPD fabrication divided into sub-projects:
 - **1.** Development of higher quantum efficiency photo-cathodes
 - 2. Use of Atomic Layer Deposition (ALD) to control the chemistry and surface characteristics of resistive and secondary emission surfaces on MCPs
 - **3.** Electronics
 - 4. Assembly
 - 5. Testing

LAPD collaboration Meeting

MCP fabrication

>Draw lead-glass fiber bundle

➢Slice, polish, chemical etch

≻Heat in hydrogen

>Top/Bottom electrode coating (NiCr)

Drawbacks

≻Expensive

Resistance and secondary emission properties are linked

>Limited optimize MCP performance for applications where lifetime, gain, substrate size, composition and thermal runaway are important

MCP fabrication

Conventional MCP Fabrication	LAPD Approach	
≻Draw lead glass fiber bundle	Start with porous, non-lead glass	
≻Slice, polish, chemical etch	➢ALD (resistive + SEE layer) coating	
≻Heat in hydrogen	>Thermal treatment	
≻Top/Bottom electrode coating (NiCr)	➤Top/Bottom Electrode coating (NiCr)	
Drawbacks	Advantages	
≻Expensive	Independent control over composition of Resistive and SEE coating	
Resistance and secondary emission properties are linked	>Low thermal coefficient of resistance	
Limited optimize MCP performance for applications where lifetime, gain, substrate size, composition and thermal runaway are important	>Applicable: Ceramics, SiO2, plastics, polymers MCPs	
	≻Low cost (No major issue for scale-up with ALD)	
	MCP Structure	

Ultimate goal

Create workable 8"x8"MCP with ALD

Materials selection for functionalisation of MCPs

- Secondary electron emission coating:
 - Al2O3, MgO, Diamond, MgF2,
- Resistive coating: Composites of Metal and insulator
 - Variety of material
 - Reliability
 - Scaling and Cost
- Why ALD process?
 - Atomic level control over composition, thickness,
 - Excellent uniformity and conformal coating on very high aspect ratio (>98%)
 - Large area deposition, batch processing (low cost)
- Developed workable few novel resistive coatings by ALD process:
 - Submitted patent application
 - Here after named as Chemistry-1, 2,
 - Tested with different ALD grown SEE layers

ALD coating on MCP: Chemistry #1 Resistivity

ALD coating on MCP: Chemistry #1

AFM on planer substrate (Courtesy: Hau Wang)

• Uniform and smooth ALD coating on Si(100) surface

ALD coating on MCP: Chemistry #1

AFM on planer substrate (Courtesy: Hau Wang)

Uniform and smooth ALD coating pores of MCP

Reproducibility: ALD Chemistry #1

- Excellent reproducible thickness and resistance on Glass
- Resistance variation on MCP cause by electrode "end spoiling"
 - Electrode coating plays very crucial role and need reliable source

Resistivity of ALD coating on Glass: Chemistry #2

- Better control process than chemistry 1: uniform and smooth ALD coating
- Similar resistivity range (like chemisty-1) with low % of metal doping
- Process tested on large substrates capable ALD reactor

Process scale-up test: ALD chemistry #2

Resistive coating process tested on custom made large substrate processing ALD reactor

Large substrate testing: ALD Chemistry #2

Location across substrate

ltem	Thickness [A]	Index of refraction (n)
Minimum	775	1.72
Maximum	794	1.77
Average	785	1.73
% STDV (1σ)	0.57	0.84

Thermal characteristics: ALD of Chemistry #2 on MCP

- Linear I-V characteristic for all temperature
- ALD coated MCPs shows lower $\beta_T \rightarrow Reduced$ thermal runaway

```
LAPD collaboration Meeting
```

Summary

1) Developed several novel ALD of resistive coating processes

-Excellent control over thickness, uniformity, resistance & thermal coefficient

- 2) Demonstrated the scalability of the resistive ALD process
- 3) Contact electrode plays crucial role in resistance tuning

-Need attention especially for 8"x8" MCP

4) Achieved all Year 1 and some Year 2 LAPD project goals for ALD group

Next plan

- Gain test for several ALD functionalized MCP
- MCPs are extremely sensitive to moisture
 Resistance optimization in vacuum
- Testing of alternative ALD grown SEE layer
- Process qualification on commercial ALD system
 -(Beneq TFS 500, Tool installation is in progress)
- Functionalization of 8"x8" MCPs on Beneq ALD system
- After patent, write few publications

☺ Thank you for your attention. ☺

