Status/Testing of PSEC-2 Sampling ASIC

JF Genat Herve Grabas **Eric Oberla**

PSEC-2 "oscilloscope on a chip"

target specs

- channels: 4
- sampling rate: 5-18 GS/s
- input bandwidth: ~ 2GHz
- dynamic range: **1V**
- A/D conversion: 12 bits in 2 μs
 8 bits in 130 ns
- readout: 6 μs/channel
- power: <100mW/channel
- Internal trigger

process

- IBM 130 nm CMOS
- submitted directly to MOSIS
- chip back: Today!

area: 4.4x4.4 mm²

layout

Principle of Operation

block diagram

Principle of Operation - timing generator

Principle of Operation – channel block diagram

Principle of Operation – switched cap circuit

Principle of Operation – ADC & Readout

Principle of Operation – ADC & Readout

Evolution

PSEC-1 was overall failure, but we learned a lot (back-up slides for details)

Evolution

PSEC-1 was overall failure, but we learned a lot (back-up slides for details)

Evolution

PSEC-2 Evaluation Board

PSEC-2 Evaluation Board

Altera cyclone III

4x SMA inputs

Firmware/Software Status

• ASIC timing/triggering control

readout buffer (12x8192 RAM)

• USB firmware driver

• USB software from Hawaii Implement waveform GUI in future

Testing Plans:

Measurement Plans for ASIC Characterization

- <Sample Noise>-
- <Leakage Current>
- Analog Bandwidth
- Sampling Speed
- Power Consumption
- Analog/Digital Crosstalk
- Waveform Timing
- Test Structures
- DC operating points

from L.Ruckman

Future Plans

• Parallel development of front-end electronics for MCP 3x2 module

analog/digital card combo stud bonding of bare dies – Aspen Tech. detector-electronics integration

Development of back-end electronics

coming up in next talks...

Future Plans

Parallel development of front-end electronics for MCP 3x2 module

analog/digital card combo stud bonding of bare dies – Aspen Tech. detector-electronics integration

Development of back-end electronics

coming up in next talks...

• PSEC-3 design down the line..

PSEC-2 and CHAMP chips need to be tested/understood first

Design with application in mind?

Summary

- PSEC-2 Eval Board + Firmware is ready
 - need to program FPGA on board
 - 2nd rev. of firmware to be developed as necessary
- USB Software should be ready for testing

will start PSEC-2 tests next week

Back-up slides (PSEC-1 results)

Back-up slides (PSEC-1 results)

Input Trigger

- Positive and negative pulse detection
- Delay before triggering
- Threshold level adjustable
- Bypass possibility

