

Bright Ideas in Fiberoptics

LAPPD Program Review December 9-10, 2012 Argonne National Lab

Microcapillary Development

Dan Bennis (presenter) Chris Craven Michael Detarando John Escolas Michael Minot Joe Renaud

Bright Ideas in Fiberoptics

Capillary Development

- •Results of 10, 5, and 2µm multi-multi capillary draw
- tests.
- •Etchable core draw tests
- •Other Capillary developments.

Capillary Developments

Bright Ideas in Fiberoptics

Pursuing a Multi-Multi draw approach:

•Test draws done at 10, 5, and 2µms capillary diameters.

- Opens up <20μm size range for high resolution TOF applications.
 Results can be scaled up to 20μm
- •Multi-multi approach will result in a larger building block for 8"x8" block
 - •shorter lead time
 - reduced cost
- •Solid core etch trials.
- •2µm Photonic Bandgap Accelerator Program

10µm Multi-Multi

Bright Ideas in Fiberoptics

M-M stacking issues and Triplepoints.

Similar to first generation 20µm Images of cleaned and polished capillaries. (ET 3427)

5µm Multi-Multi

Bright Ideas in Fiberoptics

Uses a rectangle pack instead of hexes Linear stacking spaces. Images of as cut capillary. (ET 3550)

INCOM

2µm Multi-Multi

Bright Ideas in Fiberoptics

Uses a half-hex on the edge of multi-multi Some M-M boundary spaces. Images of polished capillaries pre cleaning. (ET 3631)

Bright Ideas in Fiberoptics

Etched Core:

•Initial draw trails conducted to evaluate potential etchable core materials.

•First core material tested had a high etch rate, but low viscosity resulting in voids in the fibers. (Pictured on the right)

Etched Core

•New core material selected with a higher viscosity to address drawing issues, and a slower etch rate.

delivery of new etchable core material

1-3 weeks.

•Etched capillary samples to Argonne February.

Bright Ideas in Fiberoptics

Other Capillary Developments

- **Photonic Bandgap Accelerator** SBIR/STTR
- •Collaboration with Stanford Linear Accelerator
- •Top Image: 2μm capillaires with 4μm center 'defect' (ET3509)
- •Bottom Image: Cudos Simulation shows the uniform longitudinal accelerating field in the central defect together with a hexagonal array of surrounding hot spots (SLAC-PUB-14440)

INCOM Related Work: CMP Trials for Bright Ideas in Fiberoptics <250 µm Thicknesses</td>

Samples sent to vendor for evaluation

- 4" x 4" x 0.078" 20 µm capillary plates
- 4" x 4" x 0.078" 20 μm solid-core plates

Target thickness: 100 μm

To be applied to 10 μm and 2 μm capillary plates