

Low Temperature Top Seal for the LAPPD Project

Dean Walters

Bob Wagner

Argonne National Laboratory

Marc Kupfer

J. Ernesto Indocochea

Alcides Raraz

University of Illinois - Chicago

Direction of Seal Development

- There are two main directions
- Direction #1 Solder type seal
- Direction #2 Compression Seal

Solder Seal

Soldering Technical Information

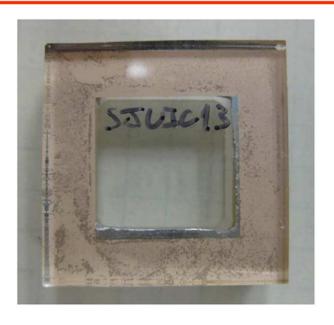
- In52/Sn48 alloy has a m.p. of 118° C.
- In66/Bi34 alloy has a m.p. of 72° C.
- Vacuum soldering: 10-6 Torr.
- After soldering tests, samples were leak tested to evaluate sealing quality.
- No pressure was applied during bonding.

Solder

Preliminary Leak Test Results

Filler Alloy (thickness)	Sidewall	Window	Temperature	Leak Test, std. cc/s He
	۸-		127	Background: 10 ⁻⁸ Max Leak: 10 ⁻⁷
	Ag	Ag	127	Background: 6.3 x 10 ⁻⁸ Max Leak: leak
	Ag	NiCr	128	Background: 2.0 x 10-9 Max Leak: 2.3 x 10-7
In52/Sn48			126	Background: 2.6 x 10 ⁻⁹ (*) Max Leak: 7.5 x 10 ⁻⁸
(50μm x 2)	NiCr	NiCr	129	Background: 1.5 x 10 ⁻⁸ Max Leak: 2.0 x 10 ⁻⁷
			128	Background: 8.5 x 10 ⁻¹⁰ Max Leak: 2.0 x 10 ⁻⁸
	Glass	Ag	127	Background: 2x10-9 (*) Max Leak: 3x10-7
	Glass	Glass	127	Background: 2x10-9 (*) Max Leak: 2.3x10-7
			76	Background: 6.3x10-8 Max Leak: Leak
66ln/34Bi	Ag	Ag	76	Background: 1.6x10-8 ^(*) Max Leak: 10-5
(100µm)			75	Background: 1.2x10-9 Max Leak: 2x10-7
			75	Background: 2.4x10-9 Max Leak: 1x10-6

- General Baseline: 8x10⁻¹⁰ std. cc/s Helium
- (*) Baseline may have been closer to 1.5x10-9
- NiCr layer is approx. 20 nm thick.



Collaboration Meeting Dec. 10, 2011

Solder

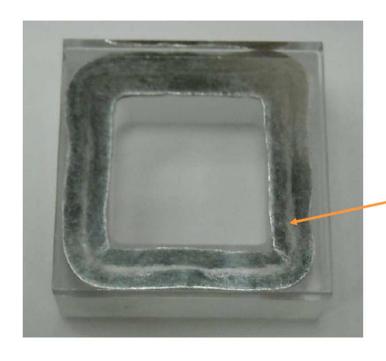
Appearance of Silver Layer

- •66ln/34Bi
- Formation of discolored patches at silver-glass interface.
- Intermetalics? Oxides?

- •52In/48Sn
- Lesser formation of discolored patches.
- Intermetalics? Oxides?

Solder

Preliminary Conclusions


- Samples with NiCr coatings had better leak test results than those with Ag layers.
- 66In/34Bi foil produced more discolored patches than 52In/48Sn at the silver paste layer-glass interface.
 - The composition and relevance of these patches are not yet determined
- Samples will be leak checked again in the future to determine effects of aging.

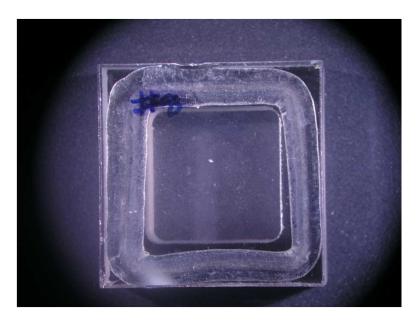
Compression Seal

Wire Seals

- Plastic deformation is key
- 100%In wire 0.030" D

Area of indium oxide showing the original location of the wire.

2007


Compression Seal

3.B. Thermocompression tests (*)

Indium alloy	Temperature, °C	Force, lbs	Time, min	Comments	Leaking test,
Pure indium wire	~ 30	700	10	Good deformation	Background: < 1.0 x 10 ⁻¹⁰ Leak at wire overlap
		800		Good deformation	Background: < 1.0 x 10 ⁻¹⁰ Leak at wire overlap
		800		Good deformation	Background: < 1.0 x 10 ⁻¹⁰ Leak at wire overlap
	~ 40	800	10	Partial deformation	Background: < 1.0 x 10 ⁻¹⁰ No Leak
		800		Partial deformation	Did not pump down
		1000		Good deformation	Background: 5.0 x 10 ⁻¹⁰

Recent Successes with a compression seal 1 inch Sample Parts

- With a loading of 800 lbs, seals have been made between both glass and NiCr coated glass substrates.
- The seal filler was pure indium in the form of .062" diameter wire
- These seals were made in air.
- All the parts were cleaned in acetone and alcohol.
- At loads of 600 lbs and lower the joint between the ends of the wire became a problem.
 - Although there is evidence that a seal was made at loads as low as 300 lbs.

800 lbs - 100 ln - 20°C - 1 minute

Equipment Progress

- Low Temperature Bonding System
 - Now operational for heating
 - Heating controls completed by HEP Electronics
 - Infrared lamps operational in the system.
 - Vacuum system
 - System leak tight
 - Base pressure of the system is 3 x 10⁻⁸ torr.
 - Hydraulics
 - Last parts being completed in shops
 - Hydraulic manifold leak tight and ready to move onto the system.

...

Future Plans

- Investigate the reduction and removal of the oxide layer on filler material and the substrate coatings.
- Continue to try tests of wire joints.
- Look at a other coating materials such as: chromium and aluminum
- Start to do the tests in the in vacuum rather than in air.
- Continue to pursue the soldering method
 - The system above has a heating capability to perform soldering in vacuum
- Fab samples that do not use flat surface to compress the seal, these samples will use beveled edges. It will be investigated that by applying the load in a small area improves the seal performance.

