Files for this page are in /psec/web/psec/library/photocathodes.

  1. Overview of photocathodes- table of materials, workfunctions, lifetimes, vacuum, response time.

  2. Session 5 (Photocathodes) of SLAC: Future Light Sources 2010. See in particular the talks of Rao, Padmore, and Harkay

  3. Significant Increase of QE is Opening New Avenues for Standard Detectors; C. Fontaine (PHOTONIS France); at LIGHT07, Sept. 23, 2007 (beautiful talk!)

  4. A. Braem et al., Technology of Photo Cathode Production

  5. P. Townsend, Photocathodes: past performance and future potential

  6. A.S. Tremsin and O.H.W. Siegmund; UV Radiation Resistance and Solar Blindness of CsI and KBr Photocathodes; IEEE Transactions on Nuclear Science, Vol. 48, No. 3, (2001)

  7. N. A. Sobaleva; A New Class of Electron Emitters (1973)

  8. William Spicer and A Herrera-Gomez; Modern Theory and Applications of Photocathodes (1963)

  9. J. Smedley (BNL); Photocathode Theory

  10. R.A. Loch, Masters Thesis, Univ. of Twente, Cesium-Telluride and Magnesium for high quality photocathodes, 2005

Basic Physics, Electronic Properties of Materials
  1. Wavelength Engineering and Bandgap Values

  2. Compilation of Energy Band Gaps in Elemental and Binary Compound

  3. M. Stossel1, J. Staudigel, F. Steuber, J. Simmerer, A. Winnacker; Impact of the Cathode Metal Work Function on the Performance of Vacuum-deposited Organic Light Emitting Devices; Appl. Phys. "A68, 387-390 (1999)

  4. Absorption curve for 300nm light in Al vs thickness; Journal of the Optical Society of Americ, V51, No.7, July 1961

  5. Optical Properties of Aluminum at 300 nm (from Seon): J Opt Soc A 51 7 1961 and Phy Rev 132 5 1963

  6. Optical properties of bialkali photocathodes; Motta and Schonert; 2004

  7. Theory of Photoemission from Cesium antimonide; Kevin Jensen, et al. J. App Phys 104, 2008 (has QE and index of refraction)

  8. Structure in the Energy Distribution of PhotoElectrons from K3Sb and Cs3Sb; E Taft and H.R. Philipp; Phys Rev 115, 1583 (Sep. 1959)

  9. Formation of Cesium Antimonide. I. Electrical Resistivity of the Film of Cesium-Antimony System; K. Miyaki J. App Phys 31, 1960

Transparent Metal Electrodes
  1. D.S. Ghosh et al. Widely transparent electrodes based on ultrathin metals; Optics Letters Vol. 34 No. 3 (2009) 325-327

  2. S. Giurgola et al. Ultra thin nickel transparent electrodes; J Mater Sci: Mater Electron (2009) 20:S181-S184

  3. L. Martinez et al. Stable transparent Ni electrodes; Optical Materials 31 (2009) 1115-1117

  4. GaN MSM Photodetectors with TiW transparent electrodes; C.K. Wang et al. Mat. Sci. & Eng. B 112 (2004) 25-29

Vapor transport data
  1. McHale, J. M. et al.; Surface energies and thermodynamic phase stability in nanocrystalline aluminas; Science 277.5327 788-791 (1997)

  2. Rodriguez, Jose A., Kuhn M., Hrbek J.; Interaction of silver, cesium and zinc with alumina surfaces: Thermal desorption and photoemission studies; Journal of Physical Chemistry 100.46 18240-18248 (1996)

  3. C. Gueneau, J.-L. Fleche; Thermodynamic assessment of the cesium-oxygen system by coupling density functional theory and CALPHAD approaches; CALPHAD 49 67-78 (2015)

  4. P. Dolizy, F. Groliere; Dissociation energies of alkali antimonides as thin layers; J. Phys. D. 19 687-698 (1986)

  5. Plot of Cs vapor presssure over Cs3Sb, enlarged from Dolizy 86

  6. Plot of K vapor presssure over K3Sb, enlarged from Dolizy 86

  7. Plot of gas chemical potential as a function of pressure, for water, K and Cs

    (The 20 steps in Figure 1 of RCA Patent 3838304 written out in prose.)

  2. J. Pancir and I. Haslingerova, Topological study of the multi-alkal| photocathode destabilization due to molecular oxygen; App. Surf. Sci 37,369, May 1989

  3. L. Galan and C.W. Bates, Structure of Multialkali Antimonide Photocathodes Studied by X-ray Photoelectron Spectroscopy, J. Phys. D. Appl. Phys. 13, 293 (1981)

  4. C. Ghosh and B.P. Varma, Preparation and Study of Properties of a few Alkali Antimonide Photocathodes, J. Appl. Phys. 49, 8, Aug. 1978

  5. A.R.H.F. Ettema and R. A de Groot, Electronic structure of Cs2KSb and K2CsSb; Phys. Rev B66, 115102 (2002)

  6. R. Mirzoyan, F. Goebel, J. Hose, C.C. Hsu, J. Ninkovic, D. Paneque, A. Rudert, M. Teshima; Enhanced Quantum Efficiency Bialkali Photo Multiplier Tubes; NIM A572, p449 (2007)

  7. R. Mirzoyan, M. Laatiaoui, M. Teshima; Very high quantum efficiency PMTs with bialkali photo-cathode, NIM A567. 230-232 (2006)

  8. Hamamatsu Ultrabialkali and Superbialkali typical spectra response characteristics

  9. Hamamatsu Patent Application 20100253218 (2010)

  10. Hamamatsu Ultrabialkali and Superbialkali specifications table

  11. L. T. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model; J of Phys. Chem, Russ. Acad. of Science, Feb 2000

  12. SAES Manual of Alkali Metal Dispensers


  14. Comparison of the ANL, IHEP (Bejing), and IHEP (Protvino) SbKCs Recipes (Anatoly Ronzhin)

  15. Activation of Na2KSb photocathodewith Cs and O2 At loweered temperatures; B. Erjavec ; Applied Surface Science

  16. Study of novel stable photocathode materials for gaseous photon detectors in the near-UV to visible spectral range; Efrat Shefer; thesis

  17. Enhancement of photomultipliersensitivity with anti-reflective layers;Harmer et al.; 2011

  18. Synthesis of the multialkali photocathodes by molecular beam epitaxy V.V.Balanyuk*, A.S.Chernikov**, V.F.Krasnov*, S.L.Musher*, V.E.Ryabchenko*, A.M.Prokhorov**, I.A.Dubovoi**, V.K.Ushakov**, M.Ya.Schelev** (1988) *

  19. Multialkali photocathodes grown by MBE technique Dubovoi l.A. , Chernikov AS. , Prokhorov A M., Schelev M. Ya., Ushakov V.K. (1990)

  20. S20 photocathodes grown by molecular-beam deposition N. Massegu, A. Konrath, J.M. Barois, P. Christol and E. Tournie (2008)

  21. MBE Grown Alkali Antimonide Photocathodes, Glosser, Estera and Bourree (US Patent, 2006)

  22. R.R. Mammei, R. Suleiman, J. Feingold, P.A. Adderley, J. Clark, S. Covert, J. Grames, J. Hansknecht, D. Machie, M Poelker, T. Rao, J. Smedley, J. Walsh, J.L. McCarter, M. Ruiz-Oses; Charge lifetime measurements at high average current using a K2CsSb photocathode inside a dc high voltage photogun

  23. M.A. Mamun, C. Hernandez-Garcia, M Poelker, and A.A. Elmustafa; Correlation of CsK2Sb photocathode lifetime with antimony thickness (APL Materials 3, 066103; 2015)

  24. Md Abdullah, A. Mamun, C. Hernandez-Garcia, M. Poelker; Alkali-antimonide photocathodes using co-deposition and effusion source (Talk at P3 Workshop, LBNL, Nov. 2014)

  25. Md Abdullah, A. Mamun, A.A. Elmustafa, C. Hernandez-Garcia, R. Mammei, and M. Poelker; Effect of Sb thickness on the performance of bialkali-antimonide photocathodes; Journal of Vacuum Science and Technology A34, 021509 (2016)

  26. S. Schubert, M. Ruiz-Oses, I. Ben-Zvi, T. Kamps, X. Liang, E. Muller, H. Padmore, T. Rao, X. Tong, T. Vecchione, and J. Smedley; Bi-alkali antimonide photocathodes for high brightness accelerators

  27. L. Cultrera, H. Lee, and I. Bazarov; Alkali antimonides photocathodes growth using pure metals evaporation from effusion cells (Journal of Vacuum Science and Technology B 34, 011202; 2016)

  28. L. Cultrera, M. Brown, S. Karkare, W. Schaff, I. Bazarov, and B. Dunham; Alkali azide based growth of high quantum efficiency photocathodes (Journal of Vacuum Science and Technology 32, 031211; 2014)

  29. H.G. Lubszynski, Dr. Ing., F. Inst. P.; Photo-Cells for the Visible and Ultra-Violet - Chapter II from "Electronics and Their Application in Industry and Research" (B. Lovell; 1947)

  30. A. H. Sommer; Characteristics of Evaporated Antimony Films as a Function of the Antimony Source

  31. Bart M. van Oerle, Gerard J. Ernst; On the use of CsK2Sb photocathodes in RF linacs

  32. D. A. Orlov, J. DeFazio, S. Duarte Pinto, R. Glazenborg, and E. Kernen; High quantum efficiency S-20 photocathodes for photon counting applications

  33. ***
GaNX, GaAsX, and other materials
  1. A.S. Tremsin, O.H.W. Siegmund; Quantum efficiency and stability of alkali halide UV photocathodes in the presence of electric field

  2. O. Siegmund, J. Vallerga, et al.; Development of GaN photocathodes for UV detectors(2006)

  3. A compendium of response curves vs wave-length for different materials and commercial photo-cathodes (from Zeke Insepov)

  4. L. Guo, J. Li, and H. Xun; Calculation of QE of Field-assisted Transmission-mode GaAs Photocathodes; Semicond. Sci. TEchnol. 4, p498 (1989)

  5. J. Yoon, S. Jo, et al.; GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies (2010)

Nanostructure Photocathodes
  1. S.A. Fortuna, et al.; Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable(2008)

Source Spectra: Cherenkov Light and Other Sources
  1. B.K. Lubsandorzhiev and P.G. Pokhil; Photocathodes for the Detection of Cerenkov Radiation in Deep-Water Neutrino Telescopes, Inst. and Exp. Tech. Vol47, No. 5, p585 (2004)

  2. Cherenkov light from 50 GeV air showers (J. Carlos, Univ. of Madrid)

Plots of PhotoCathode Response Spectra
  1. Bialkali/Multi-alkali Response (from Zeke Insepov)

  2. GaAs and GaASP Response (from Zeke Insepov)

Other: Opaque Photocathodes, X-Rays, UV, IR, Miscellaneous
  1. Oswald H.W. Siegmund, and Geoffrey A. Gaines, Photoelecctron energy spectra of opaque photocathodes in the extreme and far ultraviolet; SPIE Vol 1344 EUV, Xray, and Gamma-Ray Instrumentation for Astronomy (1990)

  1. A.D. Pelton, The Ag-Cs (Silver-Cesium) System; Journal of Phase Equilibria Vol. 7 No. 3 p222 (1986)