Problems and Obstacles for Developing Nano-structured Photo-cathodes

Klaus Attenkofer
Overview

- What are the structures of interest
- What are the growth mechanisms
- Conformal/epitaxial growth
- Impurity and defects: source for thermal noise
- The role of the external electric field
- The optimization process: Need for new simulation tools
What is the best?

http://cqd.eecs.northwestern.edu/research/ebeam.php

Cost

Defined material
How May a Nano-Structured Cathode Look like

- Photon trap
- Refractive index matching
- Utilization of internal fields (PIN-structure)
- No ion etching
- Noise? (compare to APD)

Cross section of pillar:
- TiO₂
- Absorber-Metall layer: AL or GaAs
- Work function adjustment: For example CsO
- Photons (from the back)
- Glass substrate
- E-Field
- Photo-electron
- Photon absorption electron source
- TCO-coating (ZnO?)
The Way from the Cartoon to Reality
How to choose the right fabrication process

- There are many ways to Rome! Many fabrication processes exist
- Typically the most defined structures cost most!
- Which effort is essential (for example noise) and what is unimportant to the functionality.
 (shape, defect concentration)
- How to decide which structure is the best
What is Nano-Technology?
The Two Design Principles

Bottom-up approach
(molecular self-assembly)

Top-down approach
(conventional lithographic way)

Bottom-up

• Bottom-up approach is very cost efficient
• Typically not easy to change growth result
• Often not good long range order

Top-down

• Good reproducibility
• Well defined structure
• Large variety of shapes available
• Expensive for large areas
• Already used for IR detectors

http://www.nanowerk.com/spotlight/spotid=9020.php
Fabrication Methods: How to Choose

Nano-pilars etched out of multilayer:
For example 20nm diameter and 200nm high
Materials: GaSb, InAs/GaSb, GaInAs and GaInP, GaN, InGaN and AlGaN
Work: Center for quantum devices/ Prof Manijeh Razeghi
Northwestern University
http://cqd.eecs.northwestern.edu/research/ebeam.php

Catalytic growth:
Heterostructures for light emitters
Work: The Nanometer Structure Consortium at Lund University
http://www.nano.lth.se/research/nano-electronics/project-2-1

Template growth: TiO2 in AAO
Materials Properties Depend on Fabrication Process

What is a dopant?

- Conformal versus epitaxial growth
- Residual from wet or gas chemistry
- Strain and lattice mis-match have different effects
- Many different approaches available (cheap versus defined?)

"Phase segregation in AllnP shells on GaAs nanowires", N. Sköld, J.B. Wagner, G. Karlsson, et al., nano Lett. 6, 12 (2006), 2743-2747 DOI:10.1021/nl061692d
Impurity and Defects: Source for Thermal noise?

- Can models for APD’s be applied?
- What energy levels of dopents contribute to thermal noise?
- Is the internal electric field removing all charge at the beginning?

Where is a quantitative description?
Electric Field in Nano-Structures

- Field emission depends on:
 - Carrier density inside the cathode materials
 - Dielectric constant of the material (focusing effects)
- Extraction Field has to be internal (by doping)
- Many materials parameter are unknown
- Difficult to simulate (large and small dimensions)
Tunable Materials-Parameter and Shapes Require Good Simulation Tools

- Simulation has to include photon, electron, and internal/external electric fields
- Materials parameters are more or less known dependent on process technologies
- Simulations have to cover many orders of magnitude in space
- Resulting electronic properties of a given defect is often unknown
Summary

- There are many excellent growth tools available
- Each of the techniques requires hard work to do it right
- Growth mechanism vary from very cheap to very expensive (per square meter)
- At present there is no way to define the “specs”
- Basic understanding in defects, structure design, and noise is necessary

However: The gain will be huge

- Low reflection losses (opaque/front-back illumination doesn’t play a role)
- Potentially very cost efficient
- Large energy tunability and high QE