

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

Aerogel Structures for Photocathodes

Michael Pellin Argonne Distinguished Fellow Director, Materials Science Division

Thomas Prolier, Jeff Elam, Alex Martinson Stacey Standridge (NU), Joe Hupp (NU)

> 1st Workshop on Photo-cathodes: 300nm-500nm July 20-21, 2009: University of Chicago

Atomic Layer Deposition (ALD)

- Layer-by-layer thin film synthesis method
- Atomic level control over thickness and composition (even on very large areas)
- Precise coatings on 3-D objects
- Some unique possibilities for morphology control

ALD Reaction Scheme

ALD Thin Film Materials

- Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride

- Element
- Carbide
- Fluoride
- Dopant

Why Aerogels?

Readily fabricated

•Extraordinary surface area and amplifying ability

•Pseudo-1D e⁻ transport (with many cross links)

•High porosity → improved efficiency

•Multi-component ALD → allows biasing, recharging, efficient electron emission

Dark Current vs Signal -> everywhere the same radius of curvature

Silica Aerogel Coated with ZnO

Before Coating

Weight = 0.0176 g

After Coating

ALD Coating Conditions: 19 Cycles DEZ/H₂O **3 nm ZnO Coating** 10 Torr, 100 s Exposures T=177 °C

Weight = 0.1122 g

Weight Increase =537%

Aerogel Photoelectrodes:

- •High TCO loading (=conductance)
- •Continuous coating by ALD (conductivity measurements and SEM)
- •Growth on TCO platforms
- •High porosity
- Lower manufacturing cost than other PV technologies
- Non-vacuum, low temperature fabrication
- Very tolerant to impurities (no clean room necessary) light absorption and charge separation occur close to interface
- Inexpensive, abundant, benign materials (e.g. TiO₂, ZnO)
- Robust nanoscale process

Carbon Aerogels

Density = 0.082 g/cc Surface area=214 m²/g Manufacturer=Southern Research Institute

Aerogel Coating Conditions:

2) Nucleation Layer: 0.2 nm Al_2O_3 2) Metal Layer: 4 nm W

2 Cycles TMA/H₂O 5 Torr 600-300-600-300 s T=200 °C 15 Cycles Si2H6 (5 Torr)/WF6 (10 Torr) 600-300-600-300 s T=200 °C

EDAX Maps of 10 nm ALD C-Aerogel

Cross section Of ALD Coated and cleaved 1 mm thick middle C-Aerogel:

ALD W extends to middle of 1 mm thick carbon aerogel

edge

W Growth on C Aerogel

Microscopy of W-Coated Carbon Aerogels

Aerogel filament diameter increases with ALD W Cycles

Metal-coated aerogels are pyrophoric!

Conclusions: Aerogels

- Aerogels are one of many nanostructured materials that may be of interest to the detector community.
- Aerogels can be coated allowing the resistivity necessary to provide a kilovolt gradient.
- Abundant surface area means amplification should be achieved over relatively thin structures.
- Large areas are relatively easy to achieve + the self limiting properties of ALD encourages one to believe that these large areas can be uniformly coated.
- Interestingly
 - channel plate detectors achieve uniform flight times with very uniform structures
 - Aerogels would achieve uniformity with random structure averaging
- Remember 2ndary electrons are ejected without memory of their incoming direction.

