Factors Affecting QE and Dark Current in Alkali Cathodes

John Smedley Brookhaven National Laboratory

Outline

- Desirable Photocathode Properties
 - Low light detection
 - Accelerator cathodes
- Factors Affecting Performance
- Practical Experience with K₂CsSb
 - Monte Carlo modeling
 - Cathode studies

Photoinjector

Slide compliments of P. O'Shea, UMd

What makes a good photocathode?

Photoinjector

- High QE at a convenient $\boldsymbol{\lambda}$
- Low dark current
 - Dominated by field emission
- Spatially Uniform
- Long lifetime in challenging vacuum environment
 - Chemical poisoning
 - Ion bombardment
- Low intrinsic energy spread (thermal emittance)
- Typical pulse length of 10-50 ps
- Peak current density can be >10kA/cm²

Photodetector

- High QE in range of interest
- Low dark current
 - Dominated by thermal emission
- Spatially Uniform
- Large area
- Low response to "stray" light
- Reproducible
- Long lifetime in sealed system
- Cheap, easily manufactured

Three Step Model - Semiconductors

Excitation of e Reflection, Transmission, Interference Energy distribution of excited e-2) Transit to the Surface e-lattice scattering mfp ~100 angstroms many events possible $e^{-}e^{-}$ scattering (if $h\nu > 2E_{q}$) Spicer's Magic Window Random Walk Monte Carlo Response Time (sub-ps) 3) Escape surface **Overcome Electron Affinity**

Factors Affecting QE

Reflection	Choice of polarization and angle of incidence Light traps (microstructures)
Nonproductive absorption	Semiconductor cathodes (especially NEA materials) Narrow valence band Work function reduction (Schottky effect, dipole layers)
Electron scattering (electron mfp)	Stay within the "magic window", $\phi < E_{\gamma} < 2E_{gap}$ Minimize photon absorption length (surface plasmons) Good crystals – minimize defect and impurity
Deposition parameters	Substrate material, cathode thickness, sequential vs co-deposition, substrate temperature, cooling time, oxide layer formation
Vacuum environment	Ion back-bombardment, electron stimulated desorption, chemical poisoning
Operating environment	Thermal stability, space charge

Factors Affecting Dark Current

Field emission	Electric field at cathode Surface morphology (field enhancement) Work function	
Thermal emission	Temperature Work Function $I = A T^2 exp[-e\phi/(kT)]$	10 ⁸ 10 ⁷ HEAD-ON TYPE Ag-O-Cs HEAD-ON TYPE MULTIALKALI
Ion bombardment	Vacuum Work function	10 ⁵ 10 ⁵ 10 ⁵ 10 ⁴ GaAs

DARK COU

 10^{2}

10¹

10⁰

 10^{-1}

-60

HEAD-ON TYPE

SIDE-ON TYPE

-40

-20

TEMPERATURE (°C)

MULTIALKALI

LOW-NOISE BIALKAL

Low work function reduces the threshold photon energy and improves QE, especially near threshold

But, it increases dark current

=> Optimal work function depends on application

Hamamatsu Tech Not

SIDE-ON TYPE

LOW-NOISE BIALKAL

20

40

K₂CsSb (Alkali Antimonides)

Work function 1.9-2.1eV, E_g= 1.1-1.2 eV Good QE (4% -12% @ 532 nm, >30% @ 355nm)

Deposited in <10⁻¹⁰ Torr vacuum Typically sequential (Sb->K->Cs) Cs deposition used to optimize QE⁴⁰ Oxidation to create Cs-O dipole Co-deposition increases performar in tubes

Cathode stable in deposition system (after initial cooldown)

D. H. Dowell *et al.*, *Appl. Phys. Lett.*, **63**, 2035 (1993)
C. Ghosh and B.P. Varma, *"J. Appl. Phys.*, **49**, 4549 (1978)
A.R.H.F. Ettema and R.A. de Groot, Phys. Rev. B **66**, 115102

K₂CsSb

Laser Propagation and Interference

Monte Carlo Modeling

Thickness dependence @ 543 nm

Monte Carlo Modeling

QE vs Cathode Thickness

Deposition System

Sb K Cs

Sequential deposition with retractable sources (prevents cross-contamination) Cathode mounted on rotatable linear-motion arm Typical vacuum 0.02 nTorr (0.1 nTorr during Sb deposition)

Substrate & Recipe

Recipe

Following D. Dowell (NIM A356 167)

	Substrate
100 Å Sh	150 C
200 Å K	140 C
Cs to optimize QE	135 C

Cool to room temperature as quickly as possible (~15 min)

Spectral Response

Temperature Dependence

Position Scan (532 nm)

Copper vs Stainless

ВQ

0

Summary

- Alkali Antimonide cathodes have good QE in the visible and near UV
 - Narrow valance band from Sb 5p level
 - Band gap depends on which alkali metals used
 - Work function depends on surface termination (and metals used)
 - May be room for improvement by growing better crystals
- Optimal work function depends on wavelength range of interest
- For thin cathodes, it may be possible to enhance the QE by tailoring the thickness to improve absorption near emission surface
- Practical aspects, such a choice of substrate material, surface finish of substrate, and cooling rate after deposition can have a dramatic effect on the Deanks for your attention!

Additional Slides

Photoinjector Basics

Why use a Photoinjector?

- Electron beam properties determined by laser
 - Timing and repetition rate
 - Spatial Profile
 - Bunch length and temporal profile (Sub-ps bunches are possible)
- High peak current density

10⁵ A/cm²

Low emittance/temperature

<0.2 µm-rad

Cathode/Injector Properties

- Lifetime: time (or charge) required for QE to drop to 1/e of initial
- Response Time: time required for excited electrons to escape $I_p = \frac{Q_{bunch}}{\tau_{bunch}}$

Peak Current:

G. Suberlucq, EPAC04, 64 JACoW.org

Photoinjector

Thin Cathode

QE in reflection mode

QE Decay, Small Spot

Linearity and Space Charge

