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Abstract

In this paper, we examine the simulations of two different applications of a Picosec-
ond time-of-flight (TOF) detector. The system uses Cherenkov light created in the
window of the photomultiplier tube (PMT) as the detecting medium. We examine the
possibilities of using GEANT4 [1], and of using the simulation package called Geant4
Application for Tomographic Emission (GATE) [2]. With some simple modifications
to the GATE source code, we can use GATE for both Positron Emission Tomography
(PET) and HEP applications.

1 Introduction

We have created a working simulation for a Picosecond TOF Device [3]. However, as it
stands, the simulation is extremely specific to a particular detector implementation, and
is quite inflexible. We aim to create an end-to-end simulation1 of the TOF Device that is
modular and can thus be used for a variety of physical and radiological applications. We want
to encompass in the simulation the origins of the particles to be detected, their path through
any given geometry and into any defined photomultiplier tube (PMT) or microchannel-plate
(MCP) PMT, the charge collection on an anode and the subsequent electronics, for the
purpose of obtaining timing resolution.

2 HEP Simulations

In the current system, the HEP simulations are done in three programs: GEANT4, ROOT,
and HSPICE. We use a combination of GEANT4 source codes and macros files to define the
geometry of the system, the properties of the test particles involved, tracking methods, and
to invoke physics processes. The result of this simulation is a text file, which is then routed
through a Python script into a series of ROOT scripts. These include material information
for different MCP windows, information regarding the quantum efficiency of the MCP (Burle
Planacon [3]), and a simulation that produces the location and time of arrival of the resultant
pulses. Another ROOT script converts the results into an HSPICE input file. HSPICE is
then used to simulate the electronics involved, and to generate pulses. A more detailed set
of block diagrams is given in Figures 1- 2.

1By an ’end-to-end’ simulation, we refer to a simulation that starts from the origin of the particle to be
detected, whether in a collision or by decay, and simulates the process of detecting the particle through the
time when we register the detection of the particle and its relevant properties.
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Figure 1: Block diagram for the current HEP TOF ’end-to-end’ simulation.

The current simulation has proved very useful, but has been patched together. It requires
the installation of two different programs in order to run (GEANT4 and ROOT) and it is
not modular enough to be easily changeable. For example, in order to change the angle of
incidence of particles, one must go directly to the source code, whereas particle energy is
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Figure 2: Block diagram for the GEANT4 portion of the current simulation. Note that, for example, to
change particle attributes, one must either edit the macros file or the source code. Furthermore, there is no
flexibility about geometry unless the source code is directly modified.

edited in a macros file. A better framework would eliminate these problems.
There are two possibilities for a new framework. We could continue to use GEANT4

as the simulation program, and rewrite the MCP code for GEANT4. This would allow for
more interchangeability within the simulation. However, there are drawbacks. For a pure
GEANT4 simulation, we would have to completely rewrite the simulation in order to provide
for more modularity. Currently, very few aspects of the simulation are easily changeable, and
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those are relatively minor. A new simulation would have to allow for different geometries or
configurations to be easily implementable to accommodate different applications. Figure 3
shows the layout of an ideal GEANT4-based simulation.

"Detector" 
Construction/

Magnetic Field

Primary 
Generator Action 

(particle list)

Detector 
Messenger

Physics List

Stepping Action

Event Action

Stepping Verbose

MCP PMT

System Attributes

Framework for System Manipulation

Invoked physics processes

Rules for Step Size

Rules for Event Handling

Rules for output format

HSPICE 
Electronics 
Simulation

Simulation, generation of output text file
with position, time, momentum, energy

of arrival

Choose to execute with MCP or 
PMT, with any detector configuration,

can change particle attributes

Output (pulse)

Macros 
File

Python 
Converter to 

HSPICE

Figure 3: Block diagram for a ”pure” GEANT4 simulation (the electronics are still HSPICE). Depending
on the needs of the user, the code can be recompiled or reexecuted using a variety of PMT options as well
as geometries.

The second possibility is that we use a modified version of GATE for the entire simulation.
In GATE, we would simply input the geometry of the detector, the materials involved, the
particle properties, and the verbose level (the detail provided in the output file). A diagram
showing the outline of the simulation is given in Figure 4. A more detailed explanation of
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GATE is given later on. The PMT or MCP code could be easily swapped with the default
”digitization” module in GATE, which would increase the applications for which the code
could be used. A simple Python or ROOT script could be used to convert the GATE output
into HSPICE input, as was done before.

In a pure GATE scheme, we would have to write a module to simulate a magnetic field,
and recompile GATE, since this is not currently supported. We would also have to invoke
the Cherenkov radiation process from the GEANT4 library. As the former has already been
done for the original GEANT4 simulation, we do not foresee any difficulties for doing the
same for GATE. However, providing a framework for a changeable field configuration could
pose a challenge.

3 PET Simulations

GATE serves as an assembled toolkit based on Geant4 dedicated for PET and SPECT
imaging. In GATE, the user can define the system geometry and set the particle source
parameters by editing the macros file. The physics processes are taken from Geant4 and
CLHEP libraries. The direct output GATE generates is a file of ’hits’, which includes the
complete information of the interaction events (time, position, energy deposition, momen-
tum change, type of interaction) between the particle production and the detector. Then
a virtual digitizer mimics the electronic read-out by setting detector parameters such as
energy resolution, spatial resolution, etc. The latest version of GATE can also simulate
the optical photon generation and transport processes inside the scintillators, but the final
pulse generation (singles and coincidences in PET) still relies on parameters set by the user
(Figure 4).

The most obvious advantage of GATE is its flexibility of changing system geometry and
material selection by modifying only the macros file. However, in order to rigorously simulate
the electron generation and transport inside the MCP/PMT, we need to replace the digitizer
and sorter in Figure 4 by a specific module for each type of PMT.
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Figure 4: Block diagram for GATE simulation. The latest version of GATE (v. 3) can simulate scintillators,
but the PMT - the Digitizer block on the right branch - is still not a rigorous Monte-Carlo simulation.

4 Conclusions

GATE is already a fully functional GEANT4-based program that allows for simulation of
tomography. From initial investigations, it appears that we can easily replace the digitizer
and sorter modules of the program with specific PMT modules that will more rigorously
simulate photoelectron transport. We would ideally like to have a coherent, end-to-end
simulation that uses as few different programs as possible so as to simplify modification.
Thus, with a few modifications, it appears as if GATE could be used as this flexible framework
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to simulate both radiological and physical applications.
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