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Abstract

This paper is devoted to a theoretical investigation of stochastic
processes of an electron multiplication. The developed method is based
on Monte Carlo simulations and theorems about series and parallel
amplification stages proposed here. Splitting a stochastic process into
a number of different stages, enables a contribution of each stage to
the entire process to be easily investigated. In such approach, Monte
Carlo simulations are used only once for one simple stage. The use of
the theorems provides a high calculation accuracy with minimal cost of
computations. The method is especially efficient for optimization prob-
lems which require computer simulations. In this paper the method
is used to investigate the effect of variations in channel diameters on
noise characteristics of microchannel electron multipliers.

Keywords: Stochastic process, electron multiplication, Monte Carlo
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1 Introduction

Amplification of the elementary particles in electronic devices, particularly
in microchannel electron multipliers, is a complicated stochastic process,
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Figure 1: Microchannel plate

which is usually simulated by the use of Monte Carlo (MC) methods ([1],
[2], [6], [7], [9], [11]). However, for optimization problems and some investi-
gations, the direct simulation of the entire amplification process by the MC
methods requires considerable computer time. Moreover, it is quite prob-
lematic to perform some investigations and optimizations using only MC
simulations.

The essence of the approach proposed here consists of separating the
amplification process into series and parallel stages. The advantage of the
method is that MC simulations are used once for one simple stage of the com-
plicated stochastic process. Any further investigations and optimizations do
not require any additional use of the MC methods. Moreover, splitting a
stochastic process into a number of different stages, allows a contribution of
each stage to the entire process to be easily investigated.

In this paper the model is used to investigate the effect on noise charac-
teristics of the microchannel plate caused by the variations of the channel
diameters (see Fig. 1 which is taken from [14]). Microchannel plates have
found wide applications in different areas of science, engineering, medicine
etc. However, the loss of information caused by the statistical fluctuations
in the gain of the channels, and by loss of primary electrons when they strike
the closed area of a channel plate increases a noise factor [7], [10], [17].

Section 2 includes a proof of the theorem of series amplification stages
and a proof of the theorem of n parallel amplification paths. Expressions
for the mean and variance of the amplitude distribution at the output of the
entire system are obtained.

Section 3 describes a computational model and an algorithm of the elec-
tron multiplication inside the channel multiplier. The Monte Carlo simula-
tion procedure is briefly described.

It is also shown that the amplitude distribution at the output of the
channel is determined by the effective length of the channel, where the am-
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plitude distribution is stabilized. The MC simulations are carried for one
electron emitted at the beginning of the channel, along the effective length.
The gain and variance as functions of the distance from the channel entrance
are calculated. The use of the theorems allows the output characteristics for
the entire system to be obtained.

Section 4 shows the efficiency and accuracy of the proposed method. It
compares some theoretical and experimental data.

In Section 5, expressions for the mean and variance of the amplitude
distribution at the output of an array of channels, and an expression for the
noise factor are obtained.

Section 6 is devoted to evaluation of the effect of variations in channel
diameters in a channel plate on the noise factor.

2 Theorems about Series and Parallel Amplifica-
tion Stages

2.1 Theorem about series amplification stages

Let pk(ν) be the probability distribution of the number of particles at the
output of the k-th stage, produced by one particle from the (k−1)-th stage.
Then the generating function of the probability distribution pk(ν) is:

gk(u) =
∞∑

ν=0

uνpk(ν) where |u| ≤ 1.

Using an approach similar to [16] the generating function for the proba-
bility distribution of the number of particles after the last (N -th) stage can
be constructed as:

GN (u) = GN−1[gN (u)] or GN (u) = q0(q1(q2(...(gN (u))...))) (1)

To find the mean M , and variance D of the amplitude distribution PN (ν)
after the N -th stage, we convert the expressions (1) to the logarithmic gen-
erating functions, introducing new variables:

v = lnu, hk(v) = ln
∞∑

ν=0

evνpk(ν) HN (v) = ln
∞∑

ν=0

evνPN (ν)

Then the expressions (1) can be written as:
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HN (v) = HN−1[hN (v)] or HN (v) = h0(h1(h2(...(hN (v))...)))

where HN (v) is the logarithmic generating function of the distribution PN (ν)
of the number of particles after the N -th stage; hk(v) is the logarithmic
generating function of the distribution pk(ν) of the number of particles at
the output of the k-th stage, produced by one particle from the (k − 1)-th
stage.

Differentiating HN (v) with respect to v once and using the properties of
the logarithmic generating functions, with v = 0 we obtain:

M = m0m1...mk...mN =
N∏

k=0

mk (2)

where mk is the mean value of the distribution of the number of particles
at the output of the k-th stage for one particle at its input, and M is the
mean of the amplitude distribution after the last N -th stage.

Differentiating HN (v) with respect to v twice, with v = 0 we obtain the
variance D after the N -th stage of this multistep sequential process.

D = d0(m1m2...mN )2 + d1m0(m2m3...mN )2 + d2m0m1(m3m4...mN )2 + ...

... +dkm0m1...mk−1(mk+1mk+2...mN )2 + ... + dNm0m1...mN−1

or

D =
N∑

k=0

dk

k−1∏

i=0

mi

N∏

j=k+1

m2
j (3)

The expressions (2 ) and (3) constitute the theorem of series amplification
stages. The theorem is a generalization of the Burgess theorem [17] for a
multistep sequential process. The relations (2) and (3) are transformed to
the Burgess theorem for N=1.

2.2 Theorem of parallel amplification paths

Let the primary particle be multiplied along one of n possible parallel paths,
and pk be the probability of choosing the k-th path. If each path gives an
average of gk particles at the output with a variance of dk, then the mean
G and the variance D of this multiplication process can be obtained.

Let ϕ(ν) be the probability distribution of the number of particles ν at
the output of the k-th path produced by one particle at its input. Then the
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probability distribution Φ(ν) of the number of particles at the output of the
entire system of n parallel paths will be:

Φ(ν) =
n∑

k=1

pkϕ(ν)

Then the mean G of such a multiplication process is equal to:

G =
∞∑

ν=0

Φ(ν)ν =
n∑

k=1

pk

∞∑

ν=0

ϕ(ν)ν =
n∑

k=1

pkgk (4)

The variance D of the distribution at the output of the system can be
written as:

D =
∞∑

ν=0

Φ(ν)ν2 − [
∞∑

ν=0

Φ(ν)ν]2 (5)

The first sum in (5) can be transformed to:

∞∑

ν=0

Φ(ν)ν2 =
n∑

k=1

pkdk +
n∑

k=1

pkg
2
k

Taking into account that [
∑∞

ν=0 Φ(ν)ν]2 = G2 finally the expression

D =
n∑

k=1

pkdk +
n∑

k=1

pkg
2
k −G2 (6)

is obtained, where G is determined by (4).
Equations (4) and (6) can be used for discrete and for continuous sys-

tems. For example, an individual channel in an assembly, where there is
a spread in the channel diameters, can be taken as one amplification path.
Also, variations in the collision coordinates of the electrons of the primary
beam can be considered as a choice of the amplification path. The latter case
is the example of the continuous amplification system, and the equations (4)
and (6 ) should be written as:

G =
∫

s
ψ(s)g(s)ds (7)

and

D =
∫

s
ψ(s)d(s)ds +

∫

s
ψ(s)g2(s)ds−G2 (8)
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Figure 2: Electron multiplication in the channel

where s is the surface area stroked by particles; ψ is the probability density
for the particle to strike the elementary surface ds; g(s) is the average num-
ber of particles with variance d(s) at the output of the path. Equations (4),
(6), (7) and (8) constitute the theorem of parallel amplification paths.

3 Computer Model

3.1 Monte Carlo simulations

The following physical picture was considered in the modelling. The elec-
trons of a parallel monochromatic beam are incident on the input plane of a
microchannel multiplier. Electrons entering the channel have different inci-
dence coordinates and hit the walls at different angles, producing secondary
electrons with different emission energy and directions. The secondary elec-
trons are multiplied until they leave the channel (Fig.2).

A secondary emission function [7] is used in the computer model to
represent the variation of the secondary electron emission coefficient (SEEC)

σ = σm[
V

Vm
(cos θ)1/2exp{α(1− cos θ) + β[1− V

Vm
(cos θ)1/2]}

where σm is the maximum SEEC, Vm is the collision energy in eV which
is equivalent to σm. Both Vm and σm are functions of the collision angle θ
(θ = 0 at normal incidence); α and β are constants of the channel multiplier
surface , and are chosen to fit experimental secondary emission curves at
normal incidence. (The values σm = 3.15, Vm = 300eV for θ = 0, α = 0.62
and β = 0.6 were used throughout the simulations).

The actual number of secondaries generated by the particular collision
is a random sample taken from the Poisson distribution:

P (ν) =
σνe−σ

ν!

6



Figure 3: Emission angles of the secondary electrons

where ν is the number of secondary electrons produced, σ is SEEC, calcu-
lated according to the formula above.

The energy distribution is described by a Yakobson formula [15]:

p(ε) = 2.1ε̄−3/2√εexp(−1.5ε/ε̄)

where ε̄ is the mean energy (the value ε̄ = 5eV were used throughout the
simulations).

Each secondary electron is assigned two emission angles chosen from
Lambert’s law (Fig.3):

p1(θ) = sin 2θ p2(ϕ) = 1/2π

The trajectory of each electron is calculated in three dimensions from the
ballistic equations, and so the position, energy, and angle of the subsequent
collisions are determined. The result of each collision is calculated as before
and the process is repeated for each secondary electron generated.

A contact conducting layer is deposited at the entrance of the chan-
nel multiplier. Since there is no potential drop along the conducting layer,
the conditions for the movement of secondary electrons in this region are
drastically different from motion in a uniform field. Therefore, the elec-
tron amplification process has characteristics different from those usually
considered in a uniform field.

The trajectories of the electrons in the nonuniform field are calculated
by solving the system of differential equations of motion in fields having
axial symmetry by the Runge-Kutta method [3], [5], [8]. The trajectories of
the electron motion inside the channel are calculated from the equations of
motion in the uniform field.
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The total number of electrons which have left the output of the channel
is accumulated continually. When all the electrons are calculated to have
emerged from the channel, the yield of the individual pulse is known. The
process is repeated many times to produce a series of output pulses.

3.2 Effective length of the channel

It can be shown that the form of the pulse distribution at the output of the
channel is determined by its initial section (the effective length leff ).

Formulas (2) and (3) enable one to evaluate the number of stages n,
after which the relative variance has an error δ compared with the relative
variance of the amplitude distribution at the output of the entire channel.

Let stages from (l + 1) to the end of the channel have the same mean
m and variance d each. If Ml is the mean and Dl is the variance of the
amplitude distribution after l first stages, then according to (2) and (3) the
expressions for M and D at the output of the entire system can be obtained:

M = Mlm
k

D = Dlm
2k + dMlm

k−1 mk − 1
m− 1

where k is the number of the last amplification stages.
Suppose mk $ 1 then the formula for the relative variance vr will be:

vr =
D

M2
=

Dl

M2
l

+
d

(m− 1)Mlm

The relative variance vrn after n similar stages will be:

vrn =
Dl

M2
l

+
d(mn − 1)

(m− 1)Mlmn+1

The absolute value of the error δ of the relative variance after n stages
compared with the relative variance at the output of the system is:

δ =
|vrn − vr|

vr
=

dMl

Dl(m− 1)m + dMl
.

1
mn

Since Dl > Ml we obtain:

δ <
d

(m− 1)m + d
.

1
mn
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Figure 4: The relative variance as a function of the channel length

Assuming that each separate stage of amplification in the channel is
described by a negative exponential distribution (Furry’s statistics) [10] with
a mean gain of m and variance d = m(1+m) we obtain the number of stages
n after which the relative variance has an error δ compared with the relative
variance at the output of the entire channel:

n < ln(
1 + m

2mδ
)/ lnm

At the same time the effective length leff can be evaluated as leff = λn
where λ is the average free path of electrons in the channel.

For δ = 0.01, for typical values of the multiplier parameters, leff corre-
sponds to half the channel length. The numerical experiment, using the MC
methods, completely confirms this result (Fig.4).

Fig.4 shows the relative variance vr as a function of the length of the
channel. It has been calculated for a single electron emitted at the beginning
of the channel (z is the length of the channel, and dk is its diameter.)

The effective length can be defined as a part of the channel where the
amplitude distribution is stabilized, and the shape of the distribution is close
to a negative exponential function. Figures 5 and 6 show the amplitude
distributions calculated by MC methods, for the different lengths of the
channel.

For the small length (z/dk = 1) the distribution is close to the Poisson
distribution. As the length of the channel is increasing (z/dk = 22, which is
relevant to the half of the channel) the distribution changes to the negative
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Figure 5: The amplitude distribution for z/dk = 1

exponential function. (These results are obtained for the channel diameter
dk = 10µm and a voltage on the channel V = 800 V .)

3.3 Computational algorithm

The multiplication process of a single electron with an initial departure
coordinate of z = 0 (z is the coordinate directed along the channel axis and
measured from its beginning) is simulated by MC methods in a homogeneous
field along half the channel length. Functions g(z), the mean, and d(z), the
variance, are calculated for 0 ≤ z ≤ L/2, where L is the coordinate of the
end of the channel. For n electrons leaving the first half of the channel,
the incidence coordinates (z > L/2) and the values of the SEEC (σ) are
determined.

The amplification in the second half of the channel is considered to con-
sist of n parallel paths. Each path has two sequential stages: first collision
and multiplication of a single electron until it leaves the channel. Using the
theorems of series and parallel amplification stages, the functions g(z) and
d(z) along the entire channel length (0 ≤ z ≤ L) are calculated.

The functions g(z) and d(z) for 0 ≤ z ≤ L and the theorems of series and
parallel amplification stages allow us to conduct further investigations and
optimizations without any additional MC simulations and provide highly
accurate results.
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Figure 6: The amplitude distribution for z/dk = 22

4 Evaluation of the Efficiency of the Method

The mean gain on the channel length z can be defined [17] as :

G(z) = eαz (9)

where α is the electron gain on the length unit.
Let x = z/d, where d is the channel diameter. Then the time needed

to calculate one electron pulse is proportional to the number of the emitted
electrons. An average number of collisions on the length dx is proportional
to dG/dx = αeαx. Then the time needed to calculate the electron pulse can
be declared as

τ = τ0

∫ x

0
αeαtdt = τ0(eαx − 1) (10)

Values of τ0 and α can be defined from computational experiments. Fig.7
shows the average time needed for MC simulations of one electron pulse as
a function of the channel length. (This data is relevant for the computer
Pentium 4). From the graph, τ0 = 0.44 msec and α = 0.12.

Simple calculations show that MC simulations of one amplitude distri-
bution at the output of the channel with a spread in the collision coordinates
of the input beam of electrons (which is the practical case) will take more
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Figure 7: Average time taken for simulation of one electron pulse

than 5 hours. The use of the theorems proposed here and the algorithm
described above reduces the time requirements to 5 - 10 seconds.

Calculations of the dependence of the gain and the noise factor (Fig. 8
and 9) on the energy of the input electron beam would take about 3 days
and nights of the constant work of the computer for one characteristic. The
use of the proposed theorems reduces the cost of calculations to 30 - 60
seconds.

It would require about 20 days and nights to find the optimal combina-
tion of the energy and the angle of the input electron beam which provides
the minimal noise factor [4], [13] but about 1 - 2 minutes if the proposed
theorems are used.

These evaluations are done for the uniform electrostatic field at the chan-
nel entrance. For the nonuniform electrostatic field the cost of calculations
will be increased significantly for the direct MC simulations. Moreover, if
some parameters of the input beam or of the channel were changed, the MC
simulation should be conducted again.

Alternatively, the method proposed here does not require additional use
of MC methods. The MC simulations in this case, should be conducted
only once on the effective channel length for one electron emitted at the
beginning.

The figures 8 and 9 demonstrate the accuracy of the method. They show
the dependence of the noise factor and the average gain on the energy of the
input electron beam. The theoretical results (solid curves) are compared
with the experimental data (dashed curves) [4]. (Here, the diameter of the
channel is d = 10µm, the voltage V = 800 V , and the angle of the input
beam θ = 850.)
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Figure 8: Dependence of the average gain on the energy of the input elec-
tron beam (solid curve represents calculations and dashed curve represents
experimental results).















     





Figure 9: Dependence of the noise factor on the energy of the input elec-
tron beam (solid curve represents calculations and dashed curve represents
experimental results).
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5 The Noise Factor of the Channel Multiplier

5.1 The noise factor of a single channel

Whenever the channel multiplier is used in a device, some of the information
potentially available is lost [7]. The noise factor F , which is a measure of
the loss of available information can be written as

F =
(S/N)2in
(S/N)2out

(11)

where (S/N)in and (S/N)out are ratios of the input signal to the noise and
the output signal to the noise respectively.

Assuming that the number of electrons entering the multiplier fluctuates
according to Poisson’s law [10] with the mean n, we obtain

(S/N)2in = (n/
√

n)2 = n (12)

Using the definition of the noise factor (11) and the theorems about
series amplification stages and parallel amplification paths expressions for
calculating the noise factor can be obtained. The expressions depend on
how the entire process is split into a sequence of amplification steps.

The entire amplification process in the channel multiplier can be repre-
sented in the form of a sequence of the next several stages.

1. The first observation of electrons, incident at the input of the multi-
plier (described by the Bernoulli distribution [10]), can be defined as a first
stage. If γ is the fraction of the front surface of the multiplier exposed to
electrons, then the average number of particles entering the channel and the
variance can be given by

m1 = γ d1 = γ(1− γ) (13)

2. The collision of the primary electrons with the wall of the channel
is defined as the second stage of the amplification. The distribution P (ν)
(with the mean m2 and the variance d2) of the number of electrons knocked
out by one primary electron depends on the properties of the emitter. For
a uniform emitter the number of electrons fluctuates according to Poisson’s
law with

m2 = d2 = σ1

where σ1 is the coefficient of the secondary emission of the emitting surface.
3. Further amplification of the electrons in the channel is regarded as

the third stage with the mean gain m3 = g(L) and the variance d3 = d(L).
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Taking into account the contribution of each stage to the overall process
of amplification and with the help of (2) and (3) we obtain:

(
S

N
)2out =

[nγm2g(L)]2

n[γm2g(L)]2 + γ(1− γ)n[m2g(L)]2 + d2nγg2(L) + d(L)nγm2
(14)

Based on the definition of the noise factor (11) and using formulae (12)-
(14) the noise factor for the three stages of amplification can be written
as

F = γ−1(1 + v2 + v3/m2)

where v2 = d2/m2
2 is the relative variance of the distribution at the output

of the second stage, and v3 = d(L)/g2(L) is the relative variance of the stage
of amplification of a single electron.

5.2 The noise factor of an array of the channels

Let us define the noise factor at the output of the system of n parallel
channels (Fig.1 [14]) where diameters of the channels are not necessarily the
same. The single channel can be defined as one of n parallel amplification
paths with the mean Gk and the variance Dk of the amplitude distribution
at the output of the k-th channel. Let Pk be the probability of entering
the channel with radius Rk. The part of the front surface of the channel
plate closed to electrons is considered as a separate path with the mean G0,
variance D0 and probability P0 = 1− γ.

Using (4) and (6) the mean G and variance D of the distribution at the
output of the system of n channels can be obtained as:

G =
n∑

k=1

γPkGk + (1− γ)G0

D =
n∑

k=1

γPkDk + (1− γ)D0 +
n∑

k=1

γPkG
2
k + (1− γ)G0 −G2

For G0 = 0 and D0 = 0 the noise factor F can be written as:

F = 1 +
D

G2
=

1
γ

(1 +
D1

G2
1

) (15)
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where

G1 =
n∑

k=1

PkDk

D1 =
n∑

k=1

PkDk +
n∑

k=1

PkG
2
k −G2

1

The distribution of the radii in the system of parallel channels is a contin-
uous function, and the probability Pk should be changed to the probability
density function Φ(R). Then, the expressions for G1 and D1 can be written
as:

G1 =
∫ Rmax

Rmin

Φ(R)G(R)dR (16)

D1 =
∫ Rmax

Rmin

Φ(R)D(R)dR +
∫ Rmax

Rmin

Φ(R)G2(R)dR−G2
1 (17)

6 Effect of Variations in Channel Diameters in the
Channel Plate on the Noise Factor

Variations of the channel diameters as a result of technological distortions of
a channel’s geometry leads to the variations of the amplitude distributions at
the outputs of different channels, and therefore it increases the noise factor.

The effect of the variations of the diameters in the channel plate on the
noise factor can be evaluated using the equations (15) - (17). To find the
probability density function Φ(R), let N be the total number of channels,
nk is the number of channels with the radius Rk, and pk = nk/N is the
probability of choosing the channel with radius Rk (probability distribution
of the radii in the array of channels). If Sk is the area of the channels with
radius Rk, and S is the total area of all channels, then the probability of
entering the channel with radius Rk is defined by:

Pk =
Sk

S
=

pkR2
k

p1R2
1 + p2R2

2 + ...

Therefore, the probability density distribution Φ(R) can be written as

Φ(R) =
R2ϕ(R)∫∞

0 R2ϕ(R)dR
(18)
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where ϕ(R) is the probability density distribution of the channels’ radii in
the array.

Assume that ϕ(R) is defined by the probability density function for the
normal distribution:

ϕ(R) =
1

σx

√
2π

exp[−(R− R̄)2

2σ2
x

] (19)

where σx is the variance, and R̄ is the mean.
Substituting (19) into the equation (18) we obtain

Φ(R) = AR2exp[−(R− R̄)2

2σ2
x

]

where
A = [σx

√
2π

∫ ∞

0
R2ϕ(R)dR]−1

According to the normalization condition:

A

∫ ∞

0
R2exp[−(R− R̄)2

2σ2
x

] = 1 (20)

Introducing a new variable t = R−R̄
σx

the expression (20) can be written
as:

A(σ3
x

∫ ∞

−R̄/σx

t2e−t2/2dt + 2R̄σ2
x

∫ ∞

−R̄/σx

te−t2/2dt + R̄2σx

∫ ∞

−R̄/σx

e−t2/2dt) = 1

(21)
The integrals in (21) can be expressed via the integral:

V (x) = 2/
√

2π

∫ x

0
e−t2/2dt

Therefore, we obtain
∫ ∞

−R̄/σx

e−t2/2dt =
√

2π

2
[1 + V (

R̄

σx
)]

∫ ∞

−R̄/σx

te−t2/2dt = e−R̄2/2σ2
x

∫ ∞

−R̄/σx

t2e−t2/2dt =
√

2π

2
[1 + V (

R̄

σx
)]− R̄

σx
e−R̄2/2σ2

x
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Figure 10: The noise factor as a function of the variations of the channel
diameters

Finally, the expression for the probability density distribution Φ(R) can
be written as:

Φ(R) =
2R2exp[−(R− R̄)2/2σ2

x]
2R̄σ2

xexp(−R2/2σ2
x) + σx

√
2π(R̄2 + σ2

x)[1 + V (R̄/σx)]

For the normal distribution, the maximum and minimum radii of the
channel in the array can be given as Rmax = R̄ + 3σx and Rmin = R̄− 3σx.

If δ is the variation of the channels’ radii (as a percentage of the mean
value R̄) then Rmax = R̄ + δR̄/100 and Rmin = R̄− δR̄/100.

Finally the probability density function Φ(R) is defined as

Φ(R) =
R2exp[−(R− R̄)2/2σ2

x]
R̄σ2

xexp(−R2/2σ2
x) + σx

√
2π(R̄2 + σ2

x)
(22)

Fig.10 shows the noise factor F (δ) as a function of the variations of the
channels’ diameters δ for the mean R̄ = 4µm. It is seen that even for δ = 5%
of the mean value R̄, the noise factor F increases by 75% compared with
the noise factor for δ = 0. 1

Calculations of the noise factor as a function of the variations of the
channels’ diameters using only MC simulations would take about 3 days and
nights of constant computer calculating. The use of the theorems reduces
this time to 1 minute.

The results obtained here can be used to calculate the noise factor F
for the given values of δ and R̄, to calculate δ which provides the required

1It is clear that the variations of up to 25% about the mean channel radius is incom-
patible with the dimensions of real microchannel plates. However, the function F (δ) in
Fig.10 is theoretical, and its behavior can be interesting from a mathematical point of
view. The author would be happy to discuss the results with people who can provide
similar experimental data.
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value F , and also to optimize parameters of the channel plate in terms of
the minimum F .

7 Conclusions

The method for calculation of the stochastic processes has been developed
where the entire process is represented in the form of the sequence of several
stages.

The theorems for the multistep sequential processes and for the parallel
amplification paths have been proved. Expressions for the mean and vari-
ance of the amplitude distribution at the output of the system have been
obtained.

The method has been used for investigating of the effect of variations in
channel diameters on the noise characteristics of the microchannel plate.

Expressions for calculating the noise factor have been obtained. The
noise factor, as a function of the variations of the channel diameters, has
been calculated.

It has been shown that the amplitude distribution at the output of the
channel is determined by the effective length of the channel. It enables MC
simulations to be carried out only along this length for one electron, emitted
at the beginning of the channel. The output of the entire amplification
process is calculated by the use of the theorems and obtained characteristics.
Any further investigations and optimizations can be conducted without MC
simulations. The method provides highly accurate results and significantly
reduces the cost of calculations. It enables the contribution of different
amplification stages to the entire stochastic process to be easily investigated.

The theorems also can be applied to electronic devices where the chan-
nel multiplier is considered as one stage in the whole amplification process
[12]. Moreover, the developed method is not limited by applications to only
systems with the channel multipliers and can be used for many stochastic
processes which require computer simulations.
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