MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source

Goals of the APS Test Stand

The physical construction of MCP-PMT
- Channel Plates
- Photocathodes
- Anode Structure
- Mechanical Assembly
- Electronics

Testing and Characterization
quickly validate or rule out options

Simulation
refine and optimize design

constrain models/parameter fitting
Goals of the APS Test Stand

The physical construction of MCP-PMT
- Channel Plates
- Photocathodes
- Anode Structure
- Mechanical Assembly
- Electronics

Testing and Characterization
- Microscopic/Materials-Level Characterization
- Systems/Device-Level Testing

Simulation

quickly validate or rule out options

refine and optimize design

constrain models/parameter fitting
LAPPD Collaboration: Large Area Picosecond Photodetectors

Goals of the APS Test Stand

The physical construction of MCP-PMT

- Channel Plates
- Photocathodes
- Anode Structure
- Mechanical Assembly
- Electronics

Testing and Characterization

- Microscopic/Materials-Level Characterization
- Systems/Device-Level Testing

Simulation

- quickly validate or rule out options
- refine and optimize design
- constrain models/parameter fitting

Leveraging the APS's ultra-fast laser installations and high-speed electronic expertise, this effort measures the optical and electronic characteristics of MCP assemblies simultaneously with precision timing and gain, under realistic operating conditions.
The Current Setup

- Vacuum chamber operating at 10^{-7} torr level
- MCP/photocathode assembly mounted on optical cage system.
- Cage system attached to side-mounted flange with SMA and HV feedthroughs.
- Operation with or without photocathode (CsI on diamond)
- Ti:Sapphire laser (50 fs, 800 nm), frequency-tripled to 266 nm
- Voltage on photocathode: 0 - 4.0kV
- Voltage on MCP from 1.5-2.0kV
- Timing measurements using 8-GHz and 16 GHz scopes
The Current Setup

Cage system with MCP

- Steel rod to removable flange
- Telescoping tube
- Aluminum insert (machined)
- Photo-cathode
- MCP stack (with two HV contacts)
- Steel rod
- Small cage plate
- Ceramic rod
- Large cage plate
- Ceramic spacer
- Nylon screw
- Signal board

LAPPD Collaboration: Large Area Picosecond Photodetectors

10/15/09 Collaboration Meeting
LAPPD Collaboration: Large Area Picosecond Photodetectors

The Current Setup
Results: Photocathode Measurement

- Signal Arrival Time Versus Extraction Voltage
 - Peak Signal
 - Half Max (rising edge)
 - Half Max (falling edge)

- Signal Peak Versus Extraction Voltage
 - Peak Voltage of Signal (millivolts)

10/15/09 Collaboration Meeting
Results: MCP Measurement

- Characterization of commercial Photonis MCP (The Chevron Model 3025).
- Amplification measured as integrated charge (# electrons) collected on a single stripline.
- Expected (total) amplification at 2kV: $\sim1 \times 10^7$

Example avg. scope signals at different MCP voltages.
Results: MCP Measurement

Amplification vs Extraction Voltage

FWHM of Pulse Height Distribution for Commercial MCP

Amplification: # of electrons collected on one strip-line

FWHM: # of electrons collected on one strip-line
Results: MCP Measurement

Amplification Measurements Taken for Different LED Positions

Amplification: # of electrons collected on one strip-line

Voltage Across MCP (kV)

- Nominal
- 2 turns up
- 2 turns down
- 4 turns up
- 4 turns down
After characterizing the Photonis MCP, we coat the plates with 10 nm Al₂O₃.

The “after-ALD” measurements have been taken without scrubbing.

These measurements are ongoing.
Measurement of 2nd Photonis MCP

- Used laser for both timing and amplification measurements.
- Better defined laser optics on portable breadboard.
- More experience using scope for MCP measurements.
- New signal board with four active striplines. Able to collect most charge.
- Analysis in progress...
- Next: coat half of the top MCP with ALD and perform comparitive measurement on two halves.
First Attempt: Tests of Functionalized Borosilicate Samples
First Attempt: Tests of Functionalized Borosilicate Samples

- Used mechanical assembly from commercial photonis MCP.
 - Borosilicate plates too thick to fit properly in the holder.
 - Good news: The hard glass substrates are very durable.
 - Difficulty making good electrical contact.
 - Attempt at using graphite paint introduced many problems.
- Could not apply voltages above 1.5kV without sparking. May be due to graphite dust.
- Ready to try a new sample. Will use indium foil to make contact.
- Better MCP holder almost ready…
Near Future Plans:
The ‘B’ Configuration

• More compact arrangement of MCP’s directly against a single flange. Minimal or no cabling. Simple or no photocathode. Simple stripline structure.
• Used for a precise and direct comparison of single or double channel plates, with all other variables held as constant as possible.
• Designed for simplicity, vacuum compatibility, interchangeability.
• Can be built while measurements are still taken on the current setup.
• Optical setup built onto modular, portable breadboards, and designed to handle a wide range of light sources.
• Can also be used with a well defined commercial MCP for photocathode characterization.
• Can be docked with a larger vacuum transfer system.
Near Future Plans:

The ‘B’ Configuration

Self contained, single flange system, with rear/side feedthroughs, and side nipple for pumping down.

(Can also be attached to a single flange with glass window to form a compact, two-flange “MCP”)
MCP Holder

Courtesy of Jason McPhate
MCP Holder: Status:

- Drawings have been made at Argonne, submitted to machine shop.
- Some parts already completed by Berkeley.
- Will have a complete holder in a couple of weeks.
6” Con-flat flange:
(Side Feedthroughs)

- 4 High Voltage Feedthroughs
- 1 Feedthrough for pumping down

Courtesy of Dean Walters
6” Con-flat flange:

3 Basic Types

- Flange with striplines for precision timing measurements
- Flange with a single plate for amplification measurements
- Flange with phosphor screen for testing image uniformity of single plates

10/15/09 Collaboration Meeting
6” Con-flat flange:
Status:

• Basic flange design (recess, HV, and vacuum feedthroughs) done. Soon ready to make technical drawings.

• Flange I: Timing Characterization/Striplines:
 • Signal board designed and ready to be made.
 • Potential vendor selected to make high-frequency feedthroughs.
 • Still need to figure how to arrange and connect the feedthroughs.

<table>
<thead>
<tr>
<th>242-SMA180G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>SMA Standard</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>Frequency range</td>
<td>0 - 18 GHz</td>
</tr>
<tr>
<td>Standing Wave Ratio (YSWR)</td>
<td>1.1 + 0.2i at 1 GHz</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.15 + 1.1 (GHz) dB</td>
</tr>
<tr>
<td>Max. voltage</td>
<td>1000V</td>
</tr>
<tr>
<td>Temperature</td>
<td>-65 to 200°C (CT flanges)</td>
</tr>
<tr>
<td>Vacuum leak rate</td>
<td>< 8 x 10⁻⁹ mbar l/s (Vac)</td>
</tr>
<tr>
<td>Materials</td>
<td>SS, BeCu, Invar, Glass, PTFE</td>
</tr>
<tr>
<td>Potting</td>
<td>All metal parts gold plated</td>
</tr>
<tr>
<td>Socket</td>
<td>Welded all metal seal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Pins</th>
<th>Part Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>16C7</td>
<td>1</td>
<td>242-SMA180G-C16</td>
</tr>
<tr>
<td>4DC7</td>
<td>1</td>
<td>242-SMA180G-C4D</td>
</tr>
<tr>
<td>4DC7</td>
<td>2</td>
<td>242-SMA180G-C4D-2</td>
</tr>
<tr>
<td>4DC7</td>
<td>3</td>
<td>242-SMA180G-C4D-3</td>
</tr>
<tr>
<td>4DC7</td>
<td>4</td>
<td>242-SMA180G-C4D-4</td>
</tr>
<tr>
<td>1697</td>
<td>1</td>
<td>242-SMA180G-K16</td>
</tr>
</tbody>
</table>
6” Con-flat flange:

Status:

- Basic flange design (recess, HV, and vacuum feedthroughs) done. Soon ready to make technical drawings.
- Flange II: Amplification:
 - Need to design charge-collection plate, electronics, and identify appropriate tri-axial feedthrough.
6” Con-flat flange:

Status:

• Basic flange design (recess, HV, and vacuum feedthroughs) done. Soon ready to make technical drawings.

• Flange III: Phosphor Screen:
 • Photonis already builds such a flange. In contact with them to buy the flange without the MCP.
 • Need to acquire flange and adapt if for our MCP holder.
LAPPD Collaboration: Large Area Picosecond Photodetectors

Optics: Status:

• Most of the optics have been ordered.

• Developed a “practice” breadboard with parts lying around the APS to gauge size of setup and possible challenges.

• Will be under construction in a few weeks.

<table>
<thead>
<tr>
<th>Item</th>
<th>Company</th>
<th>Product Number</th>
<th>Cost</th>
<th>#</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR Mirror (1")</td>
<td>Thor Labs</td>
<td>BB05-E03</td>
<td>75.05</td>
<td>4</td>
<td>$300.20</td>
</tr>
<tr>
<td>IR reflecting (UV transmitting) Mirror (1")</td>
<td>CVI Laser</td>
<td>TLM1-800-45-S-1037</td>
<td>200.00</td>
<td>2</td>
<td>$400.00</td>
</tr>
<tr>
<td>Blue reflecting (UV transmitting) Mirror (1")</td>
<td>CVI Laser</td>
<td>TLM1-450-45-S-1037</td>
<td>200.00</td>
<td>2</td>
<td>$400.00</td>
</tr>
<tr>
<td>UV enhanced aluminum flat mirrors (1")</td>
<td>CVI Laser</td>
<td>PAUV-MPG-2506M_LEBG</td>
<td>70.00</td>
<td>7</td>
<td>$490.00</td>
</tr>
<tr>
<td>Plano Convex Fused Silica Lenses (248-355nm)</td>
<td>CVI Laser</td>
<td>PLCX-25.4-12.9-UV</td>
<td>410.00</td>
<td>3</td>
<td>$1,230</td>
</tr>
<tr>
<td>Plano Convex Fused Silica Lenses (355-532nm)</td>
<td>CVI Laser</td>
<td>PLCX-25.4-12.9-UV</td>
<td>410.00</td>
<td>3</td>
<td>$1,230</td>
</tr>
<tr>
<td>Plano Convex Fused Silica Lenses (425-675nm)</td>
<td>CVI Laser</td>
<td>PLCX-25.4-12.9-UV</td>
<td>390.00</td>
<td>3</td>
<td>$1,170</td>
</tr>
<tr>
<td>Plano Concave Fused Silica Lenses (248-355nm)</td>
<td>CVI Laser</td>
<td>PLCC-25.4-13.1-UV</td>
<td>410.00</td>
<td>3</td>
<td>$1,230</td>
</tr>
<tr>
<td>Plano Concave Fused Silica Lenses (355-532nm)</td>
<td>CVI Laser</td>
<td>PLCC-25.4-13.1-UV</td>
<td>410.00</td>
<td>3</td>
<td>$1,230</td>
</tr>
<tr>
<td>Plano Concave Fused Silica Lenses (425-675nm)</td>
<td>CVI Laser</td>
<td>PLCC-25.4-13.1-UV</td>
<td>390.00</td>
<td>3</td>
<td>$1,170</td>
</tr>
<tr>
<td>30 mm cage plates</td>
<td>Thor Labs</td>
<td>CP02 (Imperial)</td>
<td>15.70</td>
<td>27</td>
<td>$424.05</td>
</tr>
<tr>
<td>1" Mirror Mounts</td>
<td>Thor Labs</td>
<td>KM100</td>
<td>39.90</td>
<td>20</td>
<td>$798.00</td>
</tr>
<tr>
<td>1/2" x 3" Lens/Mirror Posts</td>
<td>Thor Labs</td>
<td>TR3</td>
<td>5.42</td>
<td>40</td>
<td>$217.00</td>
</tr>
<tr>
<td>1/2" x 3" Post Holders</td>
<td>Thor Labs</td>
<td>PH2-ST</td>
<td>7.70</td>
<td>35</td>
<td>$270.00</td>
</tr>
<tr>
<td>Mounting Bases 1" x 3" x 3/8"</td>
<td>Thor Labs</td>
<td>BA1</td>
<td>5.60</td>
<td>35</td>
<td>$196.00</td>
</tr>
<tr>
<td>Kinematic Mounts for Breadboard</td>
<td>Thor Labs</td>
<td>KBS98</td>
<td>125.00</td>
<td>3</td>
<td>$375.00</td>
</tr>
<tr>
<td>Post Mounted Iris Diaphragm (25mm)</td>
<td>Thor Labs</td>
<td>ID25</td>
<td>51.50</td>
<td>4</td>
<td>$206.00</td>
</tr>
</tbody>
</table>

$11,335
Summary

• We have successfully assembled the right resources, man-power, expertise, and experience necessary to meet our testing goals.
• We are presently following 2 parallel tracks:

Current Setup

• Finishing up characterization of commercial MCP, before and after ALD.
• Long term gain study of MCP after ALD coating.
• Proof-of-principles test of MCP made using borosilicate glass with ALD coating.

Future Setup

• Finishing up design phase, starting building phase.
• Plan to be ready for comprehensive testing of ALD-based channel plates within the next month.
• Need to work on developing vacuum transfer capabilities for tests of photo-cathode samples.