Electronics Testing at UC

Eric Oberla
University of Chicago

LAPPD Collaboration Meeting, October 16-17 2009,
Argonne National Laboratory
Sampling ASIC

- 40 MHz write clock to timing generator
 - Output sampling window to storage cells
 - Controls write switch to sampling capacitors

- A/D conversion with 500 MHz-2GHz RO
 - 12 bit, 256 conversions in parallel

- 40 MHz read clock to Readout Token
 - Serial readout of data to output bus
Test Boards

- Bare Die (30 chips)
- Ceramic package (10 chips)

AC Test Board
Designed by Hawaii

DC Test Board
Designed by Chicago

LAPPD Collaboration Meeting, October 16-17 2009, Argonne National Laboratory
Test Boards

4x SMA inputs

AC Board

bare die

FPGA

Logic signals and outputs using LEMO I/Os

Analog voltage control by potentiometer

Packaged Chip

DC Board
DC Board

Why a DC board?

- Bonding of bare die to AC card is $$$$, need to make sure it’s a good investment. DC board is simple and relatively cheap.

- Measure power, DC operating points

- Also, we included several ‘test structures’ on chip
 - Comparator
 - Sampling Cell
 - Ring Oscillator w/ 12 bit counter

Compare results to simulation
DC Board Tests

- **DC Tests**
 - ‘Smoke test’ – turn on power
 - Measure power dissipation, DC operating points

- **Low-level AC tests**
 Comparator (ADC) – response time, operating range
 Ring Oscillator – frequency range
 Sampling cell – DC characteristics
 Ramp – linearity
 Token – does it work?

simulation
Test Setup
Plans

- Chip due back Monday (10/19) + DC board due back today = Results next week (?)

 - Complete DC tests
 - Tests using AC card in coordination with Hawaii

 Full chip characterization:

 - Analog Bandwidth
 - Sampling rate
 - etc…

 Firmware written by Larry Ruckman