Chicago Hawaii ASIC, Multi-Purpose [CHAMP] Overview: Hawaii Designs

Presented by: Mike Cooney

On behalf of:
Matt Andrew, Wei Cai, Kurtis Nishimura, Larry Ruckman, Gary Varner
Outline

- Background
- Hawaii Designs:
 - CSA
 - DAC
 - 2nd State Storage Array
 - D Flip-Flop
 - Voltage Controlled Delay Line
 - Waveform sampler
 - LVDS receiver
- Future
Background

- CHAMP ASIC
 - Joint U of Chicago and U of Hawaii test structure submission
 - Lays groundwork for future submissions
- Process: IBM 130nm
- First time in Hawaii using IBM process
- First ASIC design experience for:
 - Larry, Matt, Kurtis, Wei
Charge Sensitive Amplifier (CSA)

- Designed by Wei Cai
- Design goals:
 - 4ns rise time
- Overall dimensions:
 - 100μm wide by 112μm tall
CSA: Layout

Capacitors

Resistor
DAC

- Designed by Larry Ruckman
- Digital to Analog Converter:
 - R/2R design with SPI Interface
 - 12 bit resolution
 - 129.07 um by 51.23 um
 - Uses 1176 transistors
 - 6 external pins
DAC: 12 Bit Simulation

- LSB = \(\frac{1.2 \text{ V}}{2^{12}} = 293 \text{ mV/count} \)
- Theoretical slope agrees with simulation
- Slope errors in measurement will come from fabrication tolerances/errors
2nd Stage Storage Array

- Designed by Larry Ruckman
- Designed to perform long term storage (~ms) while avoiding large leakage currents as a second stage Wilkinson storage array.
- Uses large storage capacitors (1pF) with a differential pair.
Storage Array: Layout

- 138.11 um by 135.33 um
- Includes address decoding, 16 cells
- Possibly a solution for deep storage in a future waveform ASIC designs in this process
D Flip Flop

- Designed by Matt Andrew
- Two designs:
 - NOR gates:
 - Simulates operation at 2.15GHz
 - Possibly up to 2.5GHz operation
 - NOR + NAND gates:
 - Simulates operation at 3.5GHz
 - 40μm by 26μm
Voltage Controlled Delay Lines

• Designed by Matt Andrew
• Two delay lines
 • 64 stages with 9 stage delay
 – One delay line uses normal voltage FETs
 – One delay line uses low voltage FETs
• One ring oscillator
 • 11 stages with 9 stage delay
 • Several GHz in simulation (parasitics)
VCDL: Layout

Normal Vth VCDL

Low Vth VCDL

Ring oscillator
Waveform Sampling Arrays

Four sampling arrays to explore high analog bandwidth sampling, compare simulated / measured bandwidth.

Simulated bandwidths (approximate): **1.8, 2.2, 2.6, 4.2 GHz**

Each sampling cell consists of 64 of the following basic cell:

- **Inputs**, 50 Ω terminated (R not shown)
- **Differential sampling switch** (2 designs)
- **Transfer / reset / read switches** (low power)
- **Storage cap** (200fF)
- **Sample cap** (20, 30, 40 fF)
- **OTA for sampling to storage transfer**
- **Analog output buffer to take stored V off-chip for reading**
Waveform Sampling: Layout

For each array:
- Delay line sits above to generate sampling
- Shift register sits below to control the read signals.
- Enable logic allows each array to be turned off/on for independent testing.

Independent test structures:
- OTA
- Analog output buffer
LVDS Receiver

- Designed by Mike Cooney
- A Low Voltage Differential Receiver
 - Translates 2.5V I/O to core 1.2V
 - Simulates operation at 1+ GHz
 - 100mV signal differential
 - 57μm wide by 47μm tall
LVDS Receiver: Layout
Conclusion

- May submission in IBM 130nm lays groundwork for future designs
 - High speed serial I/O interfaces (LVDS)
 - Deep sampling capability
 - Trim DACs for bias control
- First ASIC design experience for 4/5 Hawaii users