Title: Technical / Sheet Glasses Range / Description: Schott B270 for 320-2600nm transmission Material / Specification: TSG-B270

Tel: +44 (0) 1622 859444 Fax: +44 (0) 1622 859555 info@knightoptical.co.uk http://www.knightoptical.co.uk

B 270 Superwite

B 270 Superwite is a clear high transmission crown glass (modified soda-lime glass) available in form of sheets, optical rods, profiled rods, strips and chain moulded rod.

Optical properties

Refractive indices (20 °C)			
Pretreatment of samples	n g	1.	53
annealed at 40 °C/h	n F′	1.	53
	<i>N</i> F	1.	53
	П е	1.5251 :	± 0.001*
	n d	1.	52
	<i>n</i> D	1.	52
* ± 0.0003 upon request	n c'	1.	52
	<i>n</i> c	1.	52
Further refractive indices in UV and IR (reference values)		see a	innex
Abbe value	Ve	58.3	± 0.6
	Vd	58	5.5
Transmittance data	·		
Spectral transmittance $ au$ (λ)			
$ au$ (λ) - curve			
Plot of spectral transmittance $\tau(\lambda)$ for $d = 2.0 \text{ mm}$ and $d = 15 \text{ mm} (\lambda = 280 \text{ nm} \text{ to } 650 \text{ nm})$ $d = 2.0 \text{ mm}$ and $d = 15 \text{ mm} (\lambda = 280 \text{ nm} \text{ to } 2000 \text{ nm})$		see annex see annex	
$ au$ (λ) - individual values in %		see annex	
Edge wavelength (<i>d</i> = 2.0 mm)			
Edge wavelength	$\lambda c(\tau = 0.46)$ in nm 312	312	
Additional data	λ s (τ = 0.05) in nm 294	294	
	λ P (τ = 0.85) in nm 340	340	
Luminous transmittance $ au_v$			
Luminous transmittance as a function of thickness			
	Thickness in mm	au vD65 in %	$ au_{ m vA}$ in %
	2	91.7	91.7
	4	91.6	91.6
	15	91	91

© Knight Optical (UK) Ltd.

Whilst every effort has been made to verify this data, Knight Optical (UK) Ltd. can take no responsibility for its accuracy.

Special transmittance values in % (<i>d</i> = 2.0 mm)		
UV - transmittance	au uva	84
	au uvb	19
IR - transmittance	au A	92.5
Solar direct transmittance	au e	91.4
Colour		
Visual evaluation		Disregard
Colorimetry (<i>d</i> = 2.0 mm)		
Chromaticity coordinates (colour locus) are referred to the namend Standard Illuminant according to CIE 2°-observer	D 65 X D 65 Y	0.314 0.332
	А <i>х</i> А <i>у</i>	0.448 0.408
		Disregard
General colour rendering index R_a ($d = 2.0$ mm)		100

Thermal properties

Viscosities and corresponding temperatures			
Designation	Viscosity log η in dPas	Temperature ∂ in °C	
Strain point	14.5	511 (~952 °F)	
Annealing point	13	541 (~1006 °F)	
Softening point	7.6	724 (~1335 °F)	
Forming temperature	6	827 (~1521 °F)	
Forming temperature	5	915 (~1679 °F)	
Forming temperature	4	1033 (~1891 °F)	
Transformation temperature <i>Tg</i> in °C		533 (~991 °F)	
Coefficient of thermal expansion $lpha$			
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the indicated temperature range (static measurement)			
	α (20 °C;300 °C)	9.4	
	α (20 °C;200 °C)	9	
	α (20 °C;100 °C)	8.2	

Fax: +44 (0) 1622 859555 info@knightoptical.co.uk http://www.knightoptical.co.uk

Coefficient of mean linear thermal expansion α in 10-6 K-1 for the (dynamic measurement)	indicated temperature ra	inge
	α (20 °C;100 °C)	7.8
	α (20 °C;150 °C)	8.4
	α (20 °C;200 °C)	8.8
	α (20 °C;250 °C)	9.1
	α (20 °C;300 °C)	9.4
	α (20 °C;350 °C)	9.6
	α (20 °C;400 °C)	9.8
	α (20 °C;450 °C)	10
	α (20 °C;500 °C)	10.3
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement)	mentioned temperature	See annex
Coefficient of mean linear thermal expansion α in 10 ₋₆ K ₋₁ for the intervals (dynamic measurement) Fuseability	mentioned temperature	See annex
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran	mentioned temperature	See annex
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity c p (20 °C to 100 °C) in J/ (g·K)	mentioned temperature	See annex 0.86
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity $c_{\rm P}$ (20 °C to 100 °C) in J/ (g·K) Thermal conductivity λ in W/ (m·K) for the indicated temperatures	mentioned temperature nge is possible.	See annex 0.86
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity $c_{\rm P}$ (20 °C to 100 °C) in J/ (g·K) Thermal conductivity λ in W/ (m·K) for the indicated temperatures	mentioned temperature nge is possible. s $\vartheta = 24.5 \ ^{\circ}C$	See annex 0.86 0.92
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity c_{P} (20 °C to 100 °C) in J/ (g·K) Thermal conductivity λ in W/ (m·K) for the indicated temperatures	mentioned temperaturenge is possible.s $\vartheta = 24.5 \ ^{\circ}C$ $\vartheta = 89 \ ^{\circ}C$	See annex 0.86 0.92 1.01
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity c_{P} (20 °C to 100 °C) in J/ (g·K) Thermal conductivity λ in W/ (m·K) for the indicated temperatures	mentioned temperature age is possible. s $\vartheta = 24.5 \text{ °C}$ $\vartheta = 89 \text{ °C}$ $\vartheta = 127 \text{ °C}$	See annex 0.86 0.92 1.01 1.08
Coefficient of mean linear thermal expansion α in 10-6 K-1 for the intervals (dynamic measurement) Fuseability Stress-free fusion with suitable lower segments out of our product ran Mean specific heat capacity c_{P} (20 °C to 100 °C) in J/ (g·K) Thermal conductivity λ in W/ (m·K) for the indicated temperatures	mentioned temperature nge is possible. s $\vartheta = 24.5 \degree C$ $\vartheta = 89 \degree C$ $\vartheta = 127 \degree C$ $\vartheta = 167 \degree C$	See annex 0.86 0.92 1.01 1.08 1.15

Mechanical properties

Density $ ho$ in g/cm ³	2.55
Stress optical coefficient C in 1.02 · 10-12 m²/N	2.7
Breaking strength	
Admissible value for the bending strength σ_{zul} of technically annealed glasses as calculation basis (air) in N/mm²	30
A higher mechanical strength can be realized by chemical toughening according to the ion exchange procedure (refer to annex 3.3.1) or by thermal toughening.	

Chemical toughening	
Processing temperature ϑ in °C	420
Processing time t in h	16
Compressive stress <i>Ds</i> as birefringence in nm/cm	7200
Penetration depth Nz up to neutral zone in µm	48
Further information	see annex
Thermal toughening	
Recommended minimum thickness <i>d</i> in mm for toughened safety glass for building purposes according to DIN 1249 T10 - 1990	4
Young´s modulus <i>E</i> in kN/mm²	71.5
Poisson's ratio μ	0.22
Torsion modulus <i>G</i> in kN/mm²	29.3
Knoop hardness <i>HK</i> 100	542

Chemical properties

Hydrolytic resistance acc. to DIN ISO 719		
Hydrolytic class	HGB 3	
Equivalent of alkali (Na ₂ O) per gram of glass grains in μ g/g	170	
Acid resistance acc. to DIN 12 116		
Acid class	S 2	
Half surface weight loss after 6 hours in mg/dm ²	1.4	
Alkali resistance acc. to DIN ISO 695		
Class	A 2	
Surface weight loss after 3 hours in mg/dm ²	140	

Electrical properties

Dielectric constant (Permittivity) ε_r at 1 MHz	7
Dissipation factor tan δ bei 1 MHz	30 · 10-4
Electric volume resistivity $ ho {\scriptscriptstyle D}$ in $\Omega \cdot$ cm at the specified temperatures	
$ ho$ ${}_{ m D}$ for alternating current 50 Hz and 3 kHz	
ϑ = 1260 °C	10.2
ϑ = 1386 °C	6.8
ρ D for direct current	
ϑ = 250 °C	109
ϑ = 350 °C	1.6 · 107
ϑ = 400 °C	2 · 106
Temperature t_{k100} in °C for a specific electric volume resistivity of 10 ₈ Ω · cm	301

info@knightoptical.co.uk http://www.knightoptical.co.uk

Spectral Transmittance from 280 – 640 nm

Spectral Transmittance from 280 – 2000 nm

