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Abstract. Fully three-dimensional  positron emission tomography is considered and  a 
reconstruction algorithm derived. The reconstruction  problem is formulated mathemat- 
ically as  a  three-dimensional convolution integral of a  point  spread function with an 
unknown positron activity distribution and is solved by Fourier  transform  methods. 
Performance of the algorithm is evaluated using both  simulated  phantom data produced by 
a Monte Carlo  computer program and  phantom data obtained from the University of 
Chicago/Searle Positron Camera. It  is concluded that  the  method is computationally 
feasible and results in accurate  reconstructions. 

1. Introduction 

During  recent  years  considerable  progress has  been  made in the  development of 
computerised  mathematical  techniques  for  reconstruction of rransverse  section  images 
(Budinger  and  Gullberg  1974,  Gordon  and  Herman  1974).  These  techniques,  often 
referred  to  as  ‘computerised  tomography’  and  ‘reconstruction  from  projections’, 
usually involve reconstruction of a single transverse  section  at  a  time.  When  a 
three-dimensional  reconstruction is required  adjacent sections are  reconstructed  and 
the sections  stacked.  Such  section-by-section  reconstruction  has  been successful 
because (1) imaging  systems can be  designed so that  the  projection  data lie in a single 
plane;  and  (2) reducing  the  three-dimensional  problem to a  series of two-dimensional 
problems  greatly  diminishes  the  mathematical  and  computational  complexity.  The 
simplification of mathematical  calculations  and the  reduction of data  arrays which 
results  from the use of 2D-analysis allows the use of minicomputers. 

Such  section-by-section  reconstruction is a useful process  for  positron  imaging,  but 
results in a low system  sensitivity.  Higher  sensitivity  positron  imaging  systems can be 
constructed  and, in fact,  are  desirable since  they can result in lowered  radiation  dose  to 
the  patient  and  shorter imaging  times.  However,  for  these  systems the  reconstruction 
problem can no  longer  be  made  two-dimensional so a  three-dimensional  technique is 
required. 

This  paper  presents  a  mathematical algorithm  for  performing fully three-dimen- 
sional  positron  emission  tomography.  The  reconstruction  problem is formulated as the 
convolution of a  point  spread  function with an  unknown  positron activity distribution. 
Fourier  transform  methods  are used to  derive  the  solution.  This  approach is shown  to 
result in an  algorithm which is only slightly more  computationally  complex  than  present 
day  section-by-section  algorithms.  Performance of the algorithm is evaluated using 
both  simulated  phantom  data  produced by a  Monte  Carlo  computer  program  and 
phantom  data  obtained  from  the University of Chicago/Searle  Positron  Camera. 
t Present address: Cerebrovascular  Research Center, Piersol Building, Hospital  of  the University of 
Pennsylvania, Philadelphia, PA  19104,  USA 
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2. The reconstruction problem 

2.1. Background 

A  goal of nuclear  medicine is the  three-dimensional  imaging of radionuclide  activity 
distributions  within  the  human  body.  Positron  emission  tomography,  as  discussed by 
Phelps (1977), Ter-Pogossian (1977) and  Budinger et a1 (1977) represents  one  means 
of achieving  this  goal. The uniqueness of positron  imaging  results  from  the  annihilation 
process which follows the emission of a  positron  from  a  nuclear  transformation.  The 
emitted  positron will generally  interact  with an  electron  and  produce two photons  each 
with an  energy of 51  1 keV.  Conservation of momentum  requires  that  these  photons  be 
emitted in nearly  opposite  directions  (Colombino et a1 1965). For  the  purpose  of this 
paper it will be  assumed  that a  positron-electron  interaction will produce two back-to- 
back photons  at  the location of the  emitter. If these  two  photons  escape  from  the  object 
and  are  detected by an imaging  system, it can  be  inferred  that  the  site  of  interaction  must 
be  somewhere  along  the ray  defined by the  detector loci. 

A  number of positron  imaging  systems  capable of producing  transverse  section 
images  have  been  developed.  Although the  details vary considerably,  these  systems 
generally consist of multiple  detectors  arranged in a  ring and  detect only  coincidence 
events  where  the  two  back-to-back  photons  lie within the  plane  defined by the ring 
(Robertson e? a1 1973, Phelps e? a1 1975, Ter-Pogossian et a1 1975, and  Cho et a1 
1977). The  data collected by such  systems are processed using various  reconstruction 
algorithms to  obtain a  single  transverse  section  image.  Multiple  sections  are  obtained 
by translating  the  patient relative to  the ring or by using a  multiple  ring  system (Cho eta1 
1978, Ter-Pogossian et a1 1978a, Ter-Pogossian e? a1 19783). Adjacent  sections  are 
reconstructed  and  stacked  to  obtain  a  three-dimensional  reconstruction.  These  systems 
suffer  from low sensitivity  since  only  a  small  fraction of the  annihilation  events will be 
detected. 

An  obvious  method of increasing  sensitivity is to increase  the solid  angle subtended 
by the  detector system.  This can be  done by using a  multiple  ring  system which detects 
interplane coincidence  events in addition  to  the  intraplane  events  or by rotating two 
opposed  large-area  detectors  around  the  object  to  be imaged  (Muehllehner eta1 1977). 
As will be  shown in the  next  section, inclusion of these  interplane  events  requires  a fully 
three-dimensional  reconstruction  algorithm.  Given  the  theoretical  results  of 
Vainshtein and  Orlov (1974) one can expect that  reconstruction  from  this  data is 
possible. The necessary data  are certainly  collected  since the  interplane  events can  be 
excluded  and  sequential  transverse  sections  reconstructed  from the  intraplane  data. 
Note  that this  situation differs from  positron  imaging  with  stationary  large  area 
detectors  (Chu  and  Tam 1977) where all the theoretically  required data  are  not 
obtained. 

Although  it is not  the  purpose of this paper  to discuss the physics of positron 
imaging, there  are  some  problems associated with accepting  interplane events-namely 
the  detection  of  undesired  events.  These arise  from two sources.  First, if one  or  both 
photons  are  scattered,  their  direction will change  and  the line  connecting  the  detected 
event  locations will not  pass  through  the  site of the  emitter.  Second  and  probably  more 
important,  are  random coincidence events in which the two detected  photons did  not 
originate  at  the  same  site. As the geometrical  sensitivity of a  positron  imaging  system is 
increased,  the  ratio  of  undesired  to  true  events will also  increase. Good  energy 
discrimination  can to  some  extent  eliminate  the  scatter coincidence  events (Atkins 
1978). The  random coincidences  can be  controlled by using faster  detectors  and  shorter 
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coincidence  resolving  time  or by reducing  the  single-channel  count  rate.  In  practice 
there will be a  trade-off between  larger  geometrical sensitivty and  increased  scatter  and 
random  coincidence  fractions. 

2.2. Mathematical  formulation 

In  the  general  sense,  the  data  obtained  from  any  positron system  consist of a  set of rays 
in three-dimensional  space which require  processing  to  obtain  an  image.  One  process- 
ing procedure is to divide the image  volume  into  volume  elements  (voxels)  and 
back-project  the rays through  the  volume.  Each voxel  along the ray path is incremen- 
ted by a  number  proportional  to  the  line  length of the ray through  the voxel. 
Alternatively  the  data  can  be  sorted  into  two-dimensional  projections  (sets of parallel 
rays)  which  can then  be  back-projected  through  the  volume,  each voxel  along the ray 
path  being  incremented by a  number  proportional  to  the  projection value and  the line 
length of the ray through  the voxel. An  estimate  for  the activity at  a voxel is given by the 
weighted  sum of all the rays  passing through it. This  procedure  does  not yield a  true 
solution  to  the activity  distribution  but  rather one  that is blurred-the  form of the 
blurring  depending on  the particular  detector configuration and  the  set of rays that it 
detects. 

To  understand  the  nature of this  blurring  for  any  system  detecting  interplane  events 
consider  a  point  emitter  located within the  detector system  (see figure 1). Rays  within 

z 
L 

Y 

Figure 1. Cross-section of the point spread function.  (Insert shows spherical  coordinate system.) 

the  shaded region will be  detected  and  back-projected  to  form  the image of this  point. 
In the limit where  the  number of detected  events is large,  this  image,  called  the  point 
spread  function (PSF), has the following  mathematical  form 

1 
h(r ,  8 , 4 ) = T r e c t  e--  

r *( 3 (1) 

where r, 8, 4 are  the  coordinates in a  spherical  coordinate system and (I, is the 
acceptance  angle of the  detector  system  (Atkins et a1 1977).  The  function  rect,(x) is 
equal  to 1 /2a  for / x /  < a  and is zero  otherwise. 
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(2)

The PSF given above is for a point emitter located at the centre of the imaging system.
If the point emitter is not located at the centre, the acceptance angle r/J is decreased (see
figure 2). Restricting the acceptance angle for all points to the minimum value it can
assume at any point makes the PSF independent of position. This spatial invariance of
the PSF is a necessary condition in the mathematical development of section 3.

Flgure 2. Variation of acceptance angle with source position.

For an arbitrary activity distribution f(r), the back-projected image g(r) is given by
the three-dimensional convolution integral

g(r)= ff(r')h(r-r')d3r'

where r is the spatial coordinate (r, (), c/J). Note that a convolution integral is appro­
priate only because the PSF h (r) has been constrained to be spatially invariant. The
reconstruction problem can now be simply stated in mathematicial terms. Given the
back-projected image g(r) and knowing the form for h(r), determine the activity
distribution f(r). The general solution will be an inverse filter h -1(r) which can be
convolved with the back-projected image g(r) to oftain f(r). The appropriate filter will
be a three-dimensional function. Since the back-projection process is linear, it is also
possible to filter the two-dimensional projections and then back-project the modified
projections to obtain f(r). In this case the appropriate filters will be a series of
two-dimensional functions, one for each projection. The projection theorem
(Budinger 1975) dictates that the two-dimensional filters will be slices or sections of the
three-dimensional filter. This point will be addressed in more detail in the following
section.

3. Reconstruction algorithm

Derivation of the reconstruction algorithm requires inversion of the integral equation
given above (equation (2)) to develop an expression for f(r) in terms of the known
quantities g(r) and h (r). Taking the Fourier transform of both sides of equation (2)
gives

G(s) = F(s)H(s) (3)

where G, F, and H are the Fourier transforms g, f, and h respectively. s represents the
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3D-cordinate in Fourier  space (S, 0, (D), The Fourier  transform is defined by 

G ( s )  = / g(r)  exp(2ris.  r )  d3r. (4 ) 

The solution is 

F ( s )  = G ( s ) / H ( s )  = G(s )H- ' ( s )  ( 5 )  

and  the activity distribution is obtained by taking  the inverse  Fourier  transform 

f ( r )  = J ~ ( s )  exp(-2rris.r) d3s. (6) 

This  solution is straightforward  provided  the  inverse filter H-' ( s )  can  be determined 
and  provided  the filter is finite for all values of S where F ( s )  exists. 

3.1. Derivation of the filter 

In this  section  an  analytic  expression  for  the filter H-'(s)  is derived. The filter could be 
calculated  from h(r)  using a  numerical procedure  (Chu  and  Tam  1977) however an 
analytic  expression is preferable,  because it allows easier  examination of the  properties 
of  the  filter. Since the PSF is circularly symmetric,  the following form  for  the  Fourier 
transform can be used  (Bracewell 1965), 

H(s ,  0) = 2 r  I / h(r,  8)Jo(2rsr sin 0 sin e) exp(-2risr cos 0 cos B)r2 sin 0 dr dB. 
m r r  

0 0  

(7) 
Substituting  for  the PSF (see  equation (l))  and changing the  order of integration gives 

H(s ,  0) = / rr/2+* [ Iom Jo(2rsr sin 0 sin e) exp(-2risr cos 0 cos 0) dr sin 8 dB (8) 

so that 

* m/?.-* 1 

since 
, 

(Abramowitz  and  Segun  1968). 

to 
By using various  trigonometric  substitutions,  the  above  expression  may  be  reduced 

This may be  integrated by parts  to  obtain 

This  expression  can be  further simplified by considering  two  distinct  regions in Fourier 
space, 101 > and 101 S G. 
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1 sin 4 
H(s,  0) = - arc sin - 

4s lsin 01 
Region 11. 101 S 9 
In this  region the  arc sin function is complex.  Using arc sin 2 = 4 log i [ Z  f ( Z 2  - 
yields 

Thus  the  Fourier  transform of the PSF is 

and  the filter is simply the reciprocal of this  expression 

The angular  dependence of this  function is given in figure 3 where H"(s, @)/S is plotted 
for  several  values of the  acceptance angle 4. The behaviour of the filter is also  shown 
pictorially in figure 4 where  cross-sections of the filter for  various  acceptance  angles are 
displayed.  Several  points  should  be  made about this  function. H"(s, 0) is finite for all 
finite values of S and  hence, in principal at least F ( s )  can  be  recovered by multiplying 
G ( s )  by H"(s, 0). The function is also  continuous in 0 as can  be  seen by substituting 

90" 
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Fil!ure 4. Cross-section of the inverse filter for various acceptance angles; A, 0°; B, 20°; C, 40°; and D, 90°.
Because of symmetry only a single quadrant is shown for each angle.

e = l/J into equation 16 (also see figure 3). In the limiting case where l/J = 0 the
expression reduces to a 'rho' filter and in the case where l/J = rr/2 it reduces to an
expression derived by Atkins et al (1977). This final point is discussed further in the
next section.

The two-dimensional filter to be used for filtering the projections before back­
projecting will be given by a cross-section of the three-dimensional filter. Due to
symmetry the filter will be independent of the projection angle l/J but will depend on the
projection angle f3 and the maximum acceptance angle l/J. In fact it can be shown that

. sin l/J
arc SIn . 2 2. 2 1/2

H~I(p,a)= (SIn a+cos a SIn (3)

2l/Jp

I . 2 2· 2 f31 . 2 .t,SIn a +COS a SIn > SIn 'I'

I . 2 2· 2 f31 . 2 .t.SIn a +COS a SIn :os; SIn 'I'

(17)

where p and a are polar coordinates defined on the projection plane.

3.2. Limiting geometries

There are two limiting geometries for which the solution to the reconstruction problem
is known. First, the case where l/J = 0 which corresponds to section-by-section
geometry and second, the case where l/J = rr/2, which corresponds to 4rr geometry. The
filter derived in the previous section should reduce to the filter for these two geometries
when the appropriate value is substituted into equation (16).
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Case I. (1, =C$ 
When  the  acceptance  angle is zero  only  annihilation  events  where  the  photons lie in a 
series of parallel  sections will be  detected.  This case therefore  corresponds  to  section- 
by-section  reconstruction  and  the  appropriate filter is the  'rho' filter (Bracewell  and 
Riddle 1967, Budinger  and  Gullberg 1974). 

For this  case Isin 01 3 sin (1,= 0 and  the following formula  applies 

This  expression is indeterminate  at (1, = 0; consequently one can use L'Hospital's  rule  to 
evaluate  it. 

Note  that p = slsin 01 so the filter function  reduces  to  the  'rho' filter as  expected. 

Case 11. (1, = 7r/2 (90") 
When  the  acceptance  angle is 90", all the  annihilation  events  can  be  detected.  This, of 
course,  does  not  represent  a practical  device  since it corresponds  to  a  spherical 
detection  system or  to infinitely large area-detectors.  However it does  provide  another 
limiting  case  against which the  solution  for  the filter can be  compared. 

For this  case lsin 01 < sin(r/2) = 1 and  therefore 

H"(& 0) = S (20) 

which agrees with the expression  derived by Atkins et a1 (1977). As  expected  there is 
no 0 dependence. 

3.3. Digital  implementation 

As with any  numerical procedure,  the image  volume is divided  into voxels and  discrete 
Fourier  transforms  are  used.  Hence  the  continuous  transforms of section  3.2 are 
replaced by discrete  transforms with a finite cut-off. The  assumption  inherent  to this 
procedure is that  the functions  involved, namelyF(s) and G(s) ,  are  band-limited. Since 
any  imaging  system has a finite resolution  this  assumption is easily justified. 

It is assumed  that  the  three-dimensional  back-projected image  has  already  been 
calculated. The back-projection  procedure  has  been discussed in some  detail  elsewhere 
(Muehllehner etal 1976, Atkins etal 1977) and only  a brief summary will be given here. 
The reconstruction  volume is divided into 16 transverse  sections of 64 X 64 voxels. 
These values  were determined by considering the resolution of the system used to 
acquire  data  and also the  computer  memory  requirements (which in this  case is an 
Interdata  8/32 with 384 kbytes of core  memory).  Each  event is defined by the co- 
ordinates of the two  detectors.  The  straight line  connecting  these  coordinates 
represents  the  back-projected  ray. On an  event-by-event  basis,  the rays are  traced 
through  the volume and voxels along  the ray path  are  appropriately  incremented. 

The first step in the  reconstruction  procedure is the calculation of the  3D-discrete 
Fourier  transform of the  back-projected  image. In practice the  back-projected  image is 
extended  from 64 x 64 x 16 to 128 X 128 X 32 by zero-filling the  additional voxels and 
the  transform of the 128 X 128 X 32 image is calculated.  This procedure avoids  aliasing 
problems  associated with performing  discrete  convolutions  (Oppenheim  and  Schafer 
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1975).  The next step is to multiply the  transformed  image by the inverse filter N"(s, 0). 
Applying  a sharp cut-off to  the filter, i.e., simply  truncating  at  some  frequency,  results in 
considerable  oscillations in the  reconstructed  image (Cheder and  Riederer  1975).  This 
effect can be  avoided if a modified filter is used.  This modified filter is given by the 
product of H"(s, 0) with  a window function W ( S )  chosen  to  make the cut-off of the 
Fourier  transform relatively smooth.  The window function  used is the  Hanning window 
(Blackman  and  Tukey  1958). 

0.5 + 0.5 COS(TS/S~,J S 6 S,,, 
W(S) = 

i 0  S > Smax 

where S,,, is the cut-off frequency. Other forms  for  the window function  were  also 
tried  but  reconstructions  were  found  to  be  rather  insensitive  to  the  exact  shape of the 
function,  provided of course  that  a  sharp cut-off was not  used.  Finally,  the  inverse 
3D-Fourier  transform of the  128 X 128 X 32  matrix is calculated and  64 x64 X 16 
reconstructed  image is displayed. 

4. Experimental evaluation 

The performance of the algorithm was tested using computer-generated  data  and  data 
obtained  experimentally.  The results are  presented in this  section. 

4.1. Computer-generated  data 

The use of computer-generated  data allows assessment of the  performance of the 
algorithm  independently of the imaging  system.  Assumptions inherent in the  deriva- 
tion of the  algorithm,  such as  shift  invariance of the PSF can be satisfied. Furthermore, it 
is easier  to  change  the imaging  conditions in a  simulation  since all that is usually 
involved are  parameter  changes  and/or minor  modifications to  the existing computer 
program. 

Computer-generated  data  were  produced using Monte  Carlo  methods.  An activity 
distribution was specified by defining centre locations in object  space  and  distributions 
about  the  centre,  either uniform or Gaussian.  Event  locations  and  direction cosines 
were  generated  randomly  and  the two  back-to-back  photons were  then  translated 
through  space. If they  struck  the  detectors,  the  coordinates  at  the  detector  were 
recorded on a list mode  tape  later  to  be  back-projected  into  a  three-dimensional 
volume.  Constraints  were  placed on the  acceptance angle to  ensure uniform sensitivity 
and  spatial  invariance of the  point  spread function. The  detector configuration consis- 
ted of two  parallel  square  plates which were  rotated  about  the  object in  1" increments. 
Each  detector was located  equidistant  from  the  centre of rotation. This  configuration, 
rather  than  a multi-ring  system, was chosen  purely  for  convenience. Since the  experi- 
mental  data  were  obtained using a similarly configured  system the list mode  tape 
formats  and processing  procedures  could be  made identical. The  phantom chosen is 
similar to  that used by Chu  and  Tam  (1977).  It consisted of a  'skull  region'  correspond- 
ing to the blood supply  for the  brain,  a  'brain'  and  a  'tumour'.  The 'skull region' was a 
spherical  shell 1.5 cm thick,  with an  inner  diameter of 9  cm, an  outer  diameter  of 
10.5 cm, and relative  activity of 1-0.  The 'brain' was located  inside  the  'skull'  and  had  a 
relative  activity of 0.2. The  'tumour' was located  off-centre with a  radius of 1-8 cm and 
relative activity of 2.0. 
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Data were generated for two cases. In the first, the acceptance angle was 20° and in
the second it was 40°. For each case more than two million events were detected and
back-projected into a volume of 64 x 64 x 16 voxels with a voxel size of 5 x 5 x 10 mm.
The back-projected and filtered images are shown in figure 5. The sections are
displayed left to right and top to bottom so a three-dimensional object can be
constructed by stacking the sections. Each group of sixteen images was scaled and
displayed with 256 gray levels so the contrast varies depending on the maximum value.

Figure 5. Reconstructions using computer generated data: A. back-projected image for 20° acceptance
angle; B. filtered image for 20° acceptance angle; C. back-projected image for 40° acceptance angle; and D.
filtered image for 40° acceptance angle.

The central section of the back-projected and filtered images is shown in figure 6. A
histogram of the relative count densities along a line through the centre of the section is
also shown. In the back-projected image the edges of the 'skull' are not clearly defined
and the background 'brain' activity is considerably elevated. In the filtered image the
edges are sharply delineated and the relative intensities of the various regions are
approximately correct.

To ascertain the gain in geometrical sensitivity that fully 3D-reconstruction affords
over section-by-section reconstruction, the data generated for the 40° acceptance angle
was reprocessed by accepting events within: (a) a 40° acceptance angle; (b) a 20°
acceptance angle; (c) sixteen 20 mm wide transverse sections; (d) sixteen 10 mm wide
transverse sections. The ratio of counts is a measure of the relative sensitivity gain (see
table 1). Note the substantial gains in sensitivity possible with fully 3D-reconstruction
procedures.
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(e) (dl

Flgure 6. Single section of reconstruction using computer-generated data for 20° acceptance angle: (a)
hack-projected image; (b) histogram of central line through (a); (c) filtered image; (d) histogram of central line
through (c).

Table 1. Gains in geometrical sensitivity.

Condition

3D-reconstruction
40° acceptance angle
20° acceptance angle

Section-by-section reconstruction
20 mm sections
10 mm sections

Number of
counts

2158028
646931

6989
1699

Relative
sensitivity!
gain

1270
380

4
1

t Relative sensitivity is the ratio of number of counts for a particular condition to
number of counts for 10 mm section condition.

4.2. Data obtained experimentally

Data obtained using the University of Chicago/Searle Positron camera were
also processed using the algorithm. This camera has been described previously
(Muehllehner et a11976) and will not be discussed here except to note that the detectors
are 37·5 cm in diameter and were adjusted so that they were 75 em apart.

The phantom was a section of the Alderson body phantom (Alderson Research
Laboratories, Stamford, Conn.). The radionuc1ide was oHGa-EDTA and the concen­
trations were adjusted as foIlows: body cavity = 1·3 Bq cm '(0,035 IJ.Ci crn"}, liver =

13 Bq cm-' (0·355 IJ.Ci cm:') and pancreas = 22 Bq ern (0,595 IJ.Ci cm '). Overfour
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Figure 7. Reconstructions of experimental data: A, hack-projected image: (BI, filtered image.

million events were back-projected into 64 x 64 x 16 voxels with a voxel size of
5·8 x 5·8 x 11·6 mm. The acceptance angle was limited to 20°. The back-projected and
filtered images are shown in figure 7.

5. Conclusion

This paper considers several aspects of the problem of performing fully three-dimen­
sional positron emission tomography. In particular, a mathematical algorithm for
filtering the back-projected image or a series of two-dimensional projections is derived.
The algorithm permits the use of interplane projection' data in addition to intraplane
data resulting in significant increases in the sensitivity of positron imaging systems.

A preliminary evaluation of the algorithm performance was conducted using both
computer-generated and experimentally-obtained data. For the simple objects imaged
accurate reconstructions with no serious artifacts were obtained. A more extensive
evaluation to include an analysis of noise propagation and the effects of accidental
coincidences and scatter coincidences in a large solid angle system should be consi­
dered.
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Resume

Tornographie aemission de positrons a trois dimensions

L'auteur examine la tomographie aemission de positrons en trois dimensions en ctablissant un algorithrne de
reconstruction. Le problerne de reconstruction est pose sous la forme d'un modele rnathernatique et ainsi se
rarnene al'integrale de convolution tridimensionnelle d'une fonction de propagation d'un point comportant
une distribution d'activite de positrons inconnue. Pour Ie resoudre on se sert des methodes de transformation
Fourrier. La valeur pratique de l'algorithrne est evaluee en utilisant des donnees d'un fantorne de simulation
mathernatique engendre par Ie programme calculateur de Monte Carlo et en se servant des donnees d'un
fantorne obtenues par la Camera aPositrons de l'Universite de Chicago/Searle. On arrive ala conclusion que
la methode est valable sur Ie plan calculateur et qu'elle permet des reconstructions precises,
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Zusammenfassung 

Vollstandig dreidimensionale  Tomographie mit Positronenausstrahlung 

Betrachtet in diesem Beitrag wird die vollstandig dreidimensionale  Tomographie mit Positronenemission, 
indem ein Rekonstruktionsalgorithmus abgeleitet wird. Mathematisch wird das Rekonstruktionsproblem als 
dreidimensionales Konvolvier-integral einer Punktausweitungsfunktion mit einer  unbekannten  Positronen- 
aktivitatsverteilung  formuliert und mit Fourierschen Umwandlungsansatzen gelost. Der interpretative Wert 
des  Algorithmus wird anhand simulierter Phantomdaten, die mittels eines  Monte  Carlo-Rechnerprogramms 
erhalten  worden  sind, und mit Phantom-daten, die von der Positronenkamera in der Universitat  Chi- 
cago/Searle  herriihren,  ausgewertet. AIS Schluflfolgerung wird festgestellt, dafl die Methode rechnerisch 
durchfiihrbar  sei und zu genauen  Rekonstruktionen fuhre. 
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