Why we should consider the red photocathodes

J. Va'vra, SLAC

Goal of this talk

1st Workshop on Photo-cathodes: 300nm 500nm

July 20-21, 2009: University of Chicago 3rd Floor Conference Room (HEP323); 5620 S. Ellis Ave

Version 2.0 July 15, 2009

Welcome and Introduction

Welcome Henry Frisch (Chicago/ANL) 8:30 - 8:33 Goals of the Workshop 8:33 - 8:45 Klaus Attenkofer (ANL)

• I will try to convince you that the range should be extended to \sim 950 nm.

Content

- Would these detectors benefit from red photocathodes ?:
 - "Pixilated" TOF detector
 - "DIRC-like" or "TOP-like" TOF detector
 - FDIRC PID detector
 - TOP PID detector
- Bialkali vs. (GaAs or GaAsP)

Typical photocathodes

• Photocathodes of interest: Bialkali, GaAs, and GaAsP. Which one? Or, should one pay more attention to Si?

Refraction index = f (wavelength)

• Important to estimate the chromatic contribution to timing resolution.

"Pixilated" TOF counter running at low gain

J.Va'vra, http://www.slac.stanford.edu/~jjv/activity/Vavra_Forward_TOF_geometry.pdf, Perugia, June 2009

Quartz cubes radiators:

Photonis MCP-PMT, 10µm holes, 64 pixels

Arguments in favor:

- low gain of $\sim 2 \times 10^4$.
- good results in beam
- use all photons
- less complicated analysis
- smaller aging rate?
- This design is extrapolation from a design used in the Fermilab test. Which photocathode to use?

Number of photoelectrons in quartz?

Npe = 370 L $\int \varepsilon(E) \sin^2 \theta_c dE$

Npe ~ 40/cm

Npe ~ 70/cm

Npe ~ 42/cm

- The photon yield goes at $1/\lambda^2$.
- Going red means that one needs higher QE.
- GaAsP gives largest number of photoelectrons.

"DIRC-like" or "TOP-like" TOF detector?

J.Va'vra, http://www.slac.stanford.edu/~jjv/activity/Vavra_Forward_TOF_geometry.pdf, Perugia, June 2009

Part of a hexagon:

Photon absorbing

- Not all photons are of "equal" quality. Some we want to throw away because they are affected by the chromatic broadening.
- We do not want photons to rattle around for too long
- This design requires a high gain operation to detect single photons

Hamamatsu MCP-PMT (SL-10) with strips and a protection foil:

φ 10 μm holes

Time-of-Proparation: TOP(Φ , θ_c , λ) = [L_{photon path})]/[v_g(λ)]

A direct photon is accepted only if: TOP: measured - TOP: expected < Cut

1 ASIC/16 channels

Even 5 photons will do

Large "DIRC-like" TOF detector?

J.Va'vra, http://www.slac.stanford.edu/~jjv/activity/Vavra_DOE_talk.pdf, Washington, July 2009

• Large detector made of many small segments.

How important is the chromatic broadening?

 $TOP(\Phi, \theta_c, \lambda) = [L_{total\ photon\ path}(\Phi, \theta_c)/[c/n_g(\lambda)], \ where\ n_g = n_{phase} - \lambda*dn_{phase}/d\lambda$

Determine TOP spread for three photon path lengths: 10, 25 and 50 cm:

• TOP-range gets smaller as one goes more red.

Chromatic term in timing resolution

 $\sigma_{Chromatic} \sim \Delta TOP/\sqrt{12}$

Chromatic term for different colors:

• Going more red reduces $\sigma_{Chromatic}$ significantly

Large "DIRC-like" TOF detector

Example #1: $\sigma_{TTS} \sim 35 \text{ ps}$, $\sigma_{Electronics} \sim 10 \text{ ps}$, $\sigma_{T0} \sim 15 \text{ ps}$ (specific to a long bunch at SuperB), Npe (Bialkali) $\sim 40/\text{cm}$, Npe (GaAsP) $\sim 70/\text{cm}$, Npe (GaAs) $\sim 42/\text{cm}$, $\epsilon_{Geometrical\ loss} \sim 1/5$

Expected resolution:

• For $L_{quartz} > 20$ cm, red-sensitive photocathodes yield better results.

Large "DIRC-like" TOF detector

Example #2: σ_{TTS} (HPK SL-10) ~ 35 ps , $\sigma_{Electronics}$ ~ 5 ps , σ_{T0} ~ 5 ps,

Npe (Bialkali) ~ 40/cm, Npe (GaAsP) ~ 70/cm, Npe (GaAs) ~ 42/cm, $\varepsilon_{\text{Geometrical loss}} \sim 1/5$

Expected resolution:

• For $L_{quartz} > 10-15$ cm, red-sensitive photocathodes yield better results.

FDIRC for SuperB

J.Va'vra, LDRD proposal, SLAC, June 2009

FDIRC PID detector: measure x & y & TOP

Pixilization of H-9500 multi-anode PMT:

- Preliminary optical design of the FDIRC (dimensions are in cm).
- Photon detectors: H a mamatsu multi-anode H-9500 multi-anode PMTs, modified to have 3mm x 12mm pixel sizes, where smaller size samples vertical direction.
- Electronics: ASIC-based waveform sampling electronics such as proposed by University of Hawaii, or a 100ps resolution TDC system proposed by the Orsay lab, France.

FDIRC PID detector

Example #3: $\sigma_{TTS}(H-9500 \text{ MaPMT}) \sim 200 \text{ ps}$, $\sigma_{Electronics} \sim 100 \text{ ps}$, $\sigma_{T0} \sim 15 \text{ ps}$, Npe (Bialkali) $\sim 40/\text{cm}$, Npe (GaAsP) $\sim 70/\text{cm}$, Npe (GaAs) $\sim 42/\text{cm}$

Expected resolution:

- For $L_{quartz} > 2-3$ meters, red-sensitive photocathodes yield much better results.
- Important thing here is that a range of TOP gets reduces going red.

Chromatic correction by timing in FDIRC

SLAC-PUB-12803 and Nucl.Instr.&Meth. A595(2008)104-107.

Chromatic correction:

(Δ Cherenkov angle ~ const * Δ TOP/L_{nath})

Data:

Beam test result for 3mm pixels:

FDIRC PID performance prediction fro SuperB based on 3mm pixels

and chromatic correction by timing:

 π/K separation: ~3.5 σ at 4 GeV/c:

- Bialkali: Chromatic error corrected by timing.
- This is the first RICH detector to do it !!
- <u>GaAs or GaAsP</u>: timing correction may not be not necessary to get the same result => one could simplify electronics (no need for ADC for instance)

TOP PID detector

K. Inami, TIPP conference, Tsukuba, Japan 2009

TOP PID detector: measure x & TOP

HPK SL-10

Beam test result with GaAsP & a filter $\lambda > 400$ nm:

π/K separation: ~3.5σ at 4 GeV/c and θ_{dip} ~ 70°

- They are developing a GaAsP photocathode with foil protection against the photocathode aging
- Photon detector type: HPK MCP-PMT SL-10.
- Electronics: CFD/TDC.

TOP PID detector

Example #4: σ_{TTS} (HPK SL-10) ~ 35 ps , $\sigma_{Electronics}$ ~ 10 ps , σ_{T0} ~ 15 ps, Npe (Bialkali) ~ 40/cm, Npe (GaAsP) ~ 70/cm, Npe (GaAs) ~ 42/cm

Expected resolution:

- For $L_{ouartz} > 2-3$ meters, red-sensitive photocathodes yield much better results.
- They could do the same chromatic correction as the FDIRC can do, that is until they have decided to segment a mirror into 4-segments.

Aging - Q.E. vs wavelangth

K. Inami, Nagoya, TIPP conference, Japan, 2009

Red wavelengths suffer most

Conclusion

- For TOF detectors with small radiators, GaAsP would produce twice as many photoelectrons compared to Bialkali
- For "DIRC-like" the benefit of red photocathodes is clear for photon propagation length longer than 10 cm
- For FDIRC and TOP there is a clear benefit going red as well.